Cargando…
Tri-model classifiers for EEG based mental task classification: hybrid optimization assisted framework
The commercial adoption of BCI technologies for both clinical and non-clinical applications is drawing scientists to the creation of wearable devices for daily living. Emotions are essential to human existence and have a significant impact on thinking. Emotion is frequently linked to rational decisi...
Autores principales: | Mohammad, Awwab, Siddiqui, Farheen, Alam, M. Afshar, Idrees, Sheikh Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614334/ https://www.ncbi.nlm.nih.gov/pubmed/37904095 http://dx.doi.org/10.1186/s12859-023-05544-1 |
Ejemplares similares
-
Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification
por: Siddiqui, Farheen, et al.
Publicado: (2023) -
ColpoClassifier: A Hybrid Framework for Classification of the Cervigrams
por: Kalbhor, Madhura, et al.
Publicado: (2023) -
A novel framework based on the multi-label classification for dynamic selection of classifiers
por: Elmi, Javad, et al.
Publicado: (2023) -
Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces
por: Banville, Hubert, et al.
Publicado: (2017) -
Subtractive Fuzzy Classifier Based Driver Distraction Levels Classification
Using EEG
por: Wali, Mousa Kadhim, et al.
Publicado: (2013)