Cargando…

Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain

OBJECTIVE: There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xinyue, Ming, Yating, Zhao, Weixing, Feng, Rui, Zhou, Yuanyue, Wu, Lijie, Wang, Jia, Xiao, Jinming, Li, Lei, Shan, Xiaolong, Cao, Jing, Kang, Xiaodong, Chen, Huafu, Duan, Xujun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614412/
https://www.ncbi.nlm.nih.gov/pubmed/37899464
http://dx.doi.org/10.1186/s13229-023-00573-2
Descripción
Sumario:OBJECTIVE: There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account. METHOD: In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4–7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC. RESULTS: We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed. CONCLUSION: This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern. Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 (https://clinicaltrials.gov/ct2/show/NCT02807766). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13229-023-00573-2.