Cargando…
Application Value of Limb Ischemic Preconditioning in Preventing Intradialytic Hypotension during Maintenance Hemodialysis
INTRODUCTION: The aim of this study was to investigate the efficacy and safety of limb ischemia preconditioning (LIPC) in the treatment of intradialytic hypotension (IDH) in patients with maintenance hemodialysis (MHD). METHODS: This was a single-center, prospective, and randomized controlled case s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614484/ https://www.ncbi.nlm.nih.gov/pubmed/37497943 http://dx.doi.org/10.1159/000531855 |
Sumario: | INTRODUCTION: The aim of this study was to investigate the efficacy and safety of limb ischemia preconditioning (LIPC) in the treatment of intradialytic hypotension (IDH) in patients with maintenance hemodialysis (MHD). METHODS: This was a single-center, prospective, and randomized controlled case study. A total of 38 patients with MHD who met the inclusion criteria from September 2021 to August 2022 were selected from the Blood Purification Center of our hospital. They were randomly divided into the LIPC group (n = 19) and the control group (n = 19). For patients in the LIPC group, the femoral artery blood flow was blocked with an LIPC instrument for 5 min (pressurized to 200 mm Hg) before each dialysis, and they were reperfused for 5 min. The cycle was repeated five times, with a total of 50 min for 12 weeks. The control group was pressurized to 20 mm Hg with an LIPC instrument, and the rest was the same as the LIPC group. The blood pressure of 0 h, 1 h, 2 h, 3 h, 4 h, and body weight before and after hemodialysis were measured in the two groups during hemodialysis, the incidence of IDH and the changes of serum troponin I (TNI) and creatine kinase isoenzyme MB (CK-MB) levels before and after the intervention were observed, and the ultrafiltration volume and ultrafiltration rate were recorded. RESULTS: At the 8th and 12th week after intervention, the MAP in the LIPC group was higher than that in the control group (103.28 ± 12.19 mm Hg vs. 93.18 ± 11.11 mm Hg, p = 0.04; 101.81 ± 11.36 mm Hg vs. 91.81 ± 11.92 mm Hg, p = 0.047). The incidence of IDH in the LIPC group was lower than that in the control group (36.5% vs. 43.1%, p = 0.01). The incidence of clinical treatment in IDH patients in the LIPC group was lower than that in the control group (6.3% vs. 12.4%, p = 0.00). The incidence of early termination of hemodialysis in the LIPC group was lower than that in the control group (1.6% vs. 3.8%, p = 0.01). The levels of TNI and CK-MB in the LIPC group after the intervention were lower than those in the control group (322.30 ± 13.72 ng/dL vs. 438.50 ± 24.72 ng/dL, p = 0.00; 159.78 ± 8.48 U/dL vs. 207.00 ± 8.70 U/dL, p = 0.00). The changes of MAP before and after the intervention were negatively correlated with the changes of TNI and CK-MB before and after the intervention (r = −0.473, p = 0.04; r = −0.469, p = 0.04). There were no differences in dry body mass and ultrafiltration rate between the two groups before and after the LIPC intervention (p > 0.05). Multiple linear regression analysis shows that TNI is the main influencing factor of ΔMAP. No LIPC-related adverse events were found during the study period. CONCLUSION: LIPC can effectively reduce the incidence of IDH in patients with MHD and may be associated with the alleviation of myocardial damage. |
---|