Cargando…
Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614518/ https://www.ncbi.nlm.nih.gov/pubmed/37729881 http://dx.doi.org/10.1159/000533984 |
Sumario: | Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke. |
---|