Cargando…

Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination

Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Wenjie, Shi, Wanrui, Cui, Yanqi, Xu, Jiajun, Liu, Shuwei, Gao, Hang, Zhu, Shoujun, Liu, Yi, Zhang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614674/
https://www.ncbi.nlm.nih.gov/pubmed/37908730
http://dx.doi.org/10.7150/thno.81650
_version_ 1785129071585263616
author Feng, Wenjie
Shi, Wanrui
Cui, Yanqi
Xu, Jiajun
Liu, Shuwei
Gao, Hang
Zhu, Shoujun
Liu, Yi
Zhang, Hao
author_facet Feng, Wenjie
Shi, Wanrui
Cui, Yanqi
Xu, Jiajun
Liu, Shuwei
Gao, Hang
Zhu, Shoujun
Liu, Yi
Zhang, Hao
author_sort Feng, Wenjie
collection PubMed
description Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Methods: Herein, we construct Fe(3+)-Shikonin metal-phenolic networks (FeShik) nanomedicines as immunogenic cell death (ICD) stimulants and multifunctional immunoadjuvants for tumor vaccination. The multifunctionality of FeShik nanomedicines is investigated by loading ovalbumin (OVA) as the model antigen to construct OVA@FeShik nanovaccines or 4T1 tumor cell fragment (TF) as homologous antigen to construct TF@FeShik nanovaccines. In vitro examinations including GSH responsive, •OH generation, colloid stability, cellular uptake, cytotoxicity mechanism of ferroptosis and necroptosis, ICD effect, the promotion of DC maturation and antigen cross-presentation were studied. In vivo observations including pharmacokinetics and biodistribution, antitumor effect, abscopal effect, immune memory effect, and biosafety were performed. Results: The presence of FeShik nanomedicines can significantly prolong the blood circulation time of antigens, increasing the bioavailability of antigens. Upon phagocytosis by tumor cells, FeShik nanomedicines can disassemble into Fe(2+) and Shikonin in response to tumor microenvironments, leading to ICD of tumor cells via ferroptosis and necroptosis. Consequently, ICD-released autologous tumor cell lysates and pro-inflammatory cytokines not only stimulate DC maturation and antigen cross-presentation, but also promote macrophage repolarization and cytotoxic T lymphocyte infiltration, resulting in the activation of adaptive immune responses toward solid tumors. Conclusion: In a word, our FeShik supramolecular nanomedicines integrate bioactivities of ICD stimulants and immunoadjuvants, such as eradicating tumor cells, activating antitumor immune responses, modulating immunosuppressive tumor microenvironments, and biodegradation after immunotherapy. Encouraged by the diversity of polyphenols and metal ions, our research may provide a valuable paradigm to establish a large library for tumor vaccination.
format Online
Article
Text
id pubmed-10614674
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-106146742023-10-31 Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination Feng, Wenjie Shi, Wanrui Cui, Yanqi Xu, Jiajun Liu, Shuwei Gao, Hang Zhu, Shoujun Liu, Yi Zhang, Hao Theranostics Research Paper Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Methods: Herein, we construct Fe(3+)-Shikonin metal-phenolic networks (FeShik) nanomedicines as immunogenic cell death (ICD) stimulants and multifunctional immunoadjuvants for tumor vaccination. The multifunctionality of FeShik nanomedicines is investigated by loading ovalbumin (OVA) as the model antigen to construct OVA@FeShik nanovaccines or 4T1 tumor cell fragment (TF) as homologous antigen to construct TF@FeShik nanovaccines. In vitro examinations including GSH responsive, •OH generation, colloid stability, cellular uptake, cytotoxicity mechanism of ferroptosis and necroptosis, ICD effect, the promotion of DC maturation and antigen cross-presentation were studied. In vivo observations including pharmacokinetics and biodistribution, antitumor effect, abscopal effect, immune memory effect, and biosafety were performed. Results: The presence of FeShik nanomedicines can significantly prolong the blood circulation time of antigens, increasing the bioavailability of antigens. Upon phagocytosis by tumor cells, FeShik nanomedicines can disassemble into Fe(2+) and Shikonin in response to tumor microenvironments, leading to ICD of tumor cells via ferroptosis and necroptosis. Consequently, ICD-released autologous tumor cell lysates and pro-inflammatory cytokines not only stimulate DC maturation and antigen cross-presentation, but also promote macrophage repolarization and cytotoxic T lymphocyte infiltration, resulting in the activation of adaptive immune responses toward solid tumors. Conclusion: In a word, our FeShik supramolecular nanomedicines integrate bioactivities of ICD stimulants and immunoadjuvants, such as eradicating tumor cells, activating antitumor immune responses, modulating immunosuppressive tumor microenvironments, and biodegradation after immunotherapy. Encouraged by the diversity of polyphenols and metal ions, our research may provide a valuable paradigm to establish a large library for tumor vaccination. Ivyspring International Publisher 2023-09-25 /pmc/articles/PMC10614674/ /pubmed/37908730 http://dx.doi.org/10.7150/thno.81650 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Feng, Wenjie
Shi, Wanrui
Cui, Yanqi
Xu, Jiajun
Liu, Shuwei
Gao, Hang
Zhu, Shoujun
Liu, Yi
Zhang, Hao
Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title_full Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title_fullStr Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title_full_unstemmed Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title_short Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
title_sort fe(iii)-shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614674/
https://www.ncbi.nlm.nih.gov/pubmed/37908730
http://dx.doi.org/10.7150/thno.81650
work_keys_str_mv AT fengwenjie feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT shiwanrui feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT cuiyanqi feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT xujiajun feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT liushuwei feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT gaohang feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT zhushoujun feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT liuyi feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination
AT zhanghao feiiishikoninsupramolecularnanomedicinesasimmunogeniccelldeathstimulantsandmultifunctionalimmunoadjuvantsfortumorvaccination