Cargando…
Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells
Inflammatory stresses underlie endothelial dysfunction and contribute to the development of chronic cardiovascular disorders such as atherosclerosis and vascular fibrosis. The initial transcriptional response of endothelial cells to pro-inflammatory cytokines such as TNF-alpha is well established. H...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614786/ https://www.ncbi.nlm.nih.gov/pubmed/37905100 http://dx.doi.org/10.1101/2023.10.11.561959 |
_version_ | 1785129100117016576 |
---|---|
author | Liu, Haibo Caliz, Amada D. Learnard, Heather Koupenova, Milka Keaney, John F. Kant, Shashi Zhu, Lihua Julie Vertii, Anastassiia |
author_facet | Liu, Haibo Caliz, Amada D. Learnard, Heather Koupenova, Milka Keaney, John F. Kant, Shashi Zhu, Lihua Julie Vertii, Anastassiia |
author_sort | Liu, Haibo |
collection | PubMed |
description | Inflammatory stresses underlie endothelial dysfunction and contribute to the development of chronic cardiovascular disorders such as atherosclerosis and vascular fibrosis. The initial transcriptional response of endothelial cells to pro-inflammatory cytokines such as TNF-alpha is well established. However, very few studies uncover the effects of inflammatory stresses on chromatin architecture. We used integrative analysis of ATAC-seq and RNA-seq data to investigate chromatin alterations in human endothelial cells in response to TNF-alpha and febrile-range heat stress exposure. Multi-omics data analysis suggests a correlation between the transcription of stress-related genes and endothelial dysfunction drivers with chromatin regions exhibiting differential accessibility. Moreover, microscopy identified the dynamics in the nuclear organization, specifically, the changes in a subset of heterochromatic nucleoli-associated chromatin domains, the centromeres. Upon inflammatory stress exposure, the centromeres decreased association with nucleoli in a p38-dependent manner and increased the number of transcripts from pericentromeric regions. Overall, we provide two lines of evidence that suggest chromatin alterations in vascular endothelial cells during inflammatory stresses. |
format | Online Article Text |
id | pubmed-10614786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106147862023-10-31 Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells Liu, Haibo Caliz, Amada D. Learnard, Heather Koupenova, Milka Keaney, John F. Kant, Shashi Zhu, Lihua Julie Vertii, Anastassiia bioRxiv Article Inflammatory stresses underlie endothelial dysfunction and contribute to the development of chronic cardiovascular disorders such as atherosclerosis and vascular fibrosis. The initial transcriptional response of endothelial cells to pro-inflammatory cytokines such as TNF-alpha is well established. However, very few studies uncover the effects of inflammatory stresses on chromatin architecture. We used integrative analysis of ATAC-seq and RNA-seq data to investigate chromatin alterations in human endothelial cells in response to TNF-alpha and febrile-range heat stress exposure. Multi-omics data analysis suggests a correlation between the transcription of stress-related genes and endothelial dysfunction drivers with chromatin regions exhibiting differential accessibility. Moreover, microscopy identified the dynamics in the nuclear organization, specifically, the changes in a subset of heterochromatic nucleoli-associated chromatin domains, the centromeres. Upon inflammatory stress exposure, the centromeres decreased association with nucleoli in a p38-dependent manner and increased the number of transcripts from pericentromeric regions. Overall, we provide two lines of evidence that suggest chromatin alterations in vascular endothelial cells during inflammatory stresses. Cold Spring Harbor Laboratory 2023-10-16 /pmc/articles/PMC10614786/ /pubmed/37905100 http://dx.doi.org/10.1101/2023.10.11.561959 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Liu, Haibo Caliz, Amada D. Learnard, Heather Koupenova, Milka Keaney, John F. Kant, Shashi Zhu, Lihua Julie Vertii, Anastassiia Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title | Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title_full | Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title_fullStr | Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title_full_unstemmed | Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title_short | Inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
title_sort | inflammatory stress-mediated chromatin changes underlie dysfunction in endothelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614786/ https://www.ncbi.nlm.nih.gov/pubmed/37905100 http://dx.doi.org/10.1101/2023.10.11.561959 |
work_keys_str_mv | AT liuhaibo inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT calizamadad inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT learnardheather inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT koupenovamilka inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT keaneyjohnf inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT kantshashi inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT zhulihuajulie inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells AT vertiianastassiia inflammatorystressmediatedchromatinchangesunderliedysfunctioninendothelialcells |