Cargando…
Single-cell and Spatial Transcriptomics Clustering with an Optimized Adaptive K-Nearest Neighbor Graph
Single-cell and spatial transcriptomics have been widely used to characterize cellular landscape in complex tissues. To understand cellular heterogeneity, one essential step is to define cell types through unsupervised clustering. While typical clustering methods have difficulty in identifying rare...
Autores principales: | Li, Jia, Shyr, Yu, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614787/ https://www.ncbi.nlm.nih.gov/pubmed/37905097 http://dx.doi.org/10.1101/2023.10.13.562261 |
Ejemplares similares
-
Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs
por: Wolff, Joachim, et al.
Publicado: (2021) -
A new affinity matrix weighted k-nearest neighbors graph to improve spectral clustering accuracy
por: Ahmed, Muhammad Jamal, et al.
Publicado: (2021) -
A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph
por: Zu, Baokai, et al.
Publicado: (2017) -
Single-cell gene set scoring with nearest neighbor graph smoothed data (gssnng)
por: Gibbs, David L, et al.
Publicado: (2023) -
Compressed kNN: K-Nearest Neighbors with Data Compression
por: Salvador–Meneses, Jaime, et al.
Publicado: (2019)