Cargando…
Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data
Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from Topological Data Analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even th...
Autores principales: | Haşegan, Daniel, Geniesse, Caleb, Chowdhury, Samir, Saggar, Manish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614807/ https://www.ncbi.nlm.nih.gov/pubmed/37904918 http://dx.doi.org/10.1101/2023.10.13.562304 |
Ejemplares similares
-
NeuMapper: A scalable computational framework for multiscale exploration of the brain’s dynamical organization
por: Geniesse, Caleb, et al.
Publicado: (2022) -
Temporal Mapper: Transition networks in simulated and real neural dynamics
por: Zhang, Mengsen, et al.
Publicado: (2023) -
Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis
por: Geniesse, Caleb, et al.
Publicado: (2019) -
A progression analysis of motor features in Parkinson's disease based on the mapper algorithm
por: Ma, Ling-Yan, et al.
Publicado: (2023) -
Fewer, Richer, Greener
por: Siegel, Laurence
Publicado: (2019)