Cargando…

Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits

Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Brielin C., Morris, John A., Lappalainen, Tuuli, Knowles, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614812/
https://www.ncbi.nlm.nih.gov/pubmed/37905013
http://dx.doi.org/10.1101/2023.10.13.562293
Descripción
Sumario:Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset, inspre helps elucidate the network architecture of blood traits.