Cargando…
Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits
Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614812/ https://www.ncbi.nlm.nih.gov/pubmed/37905013 http://dx.doi.org/10.1101/2023.10.13.562293 |
_version_ | 1785129104633233408 |
---|---|
author | Brown, Brielin C. Morris, John A. Lappalainen, Tuuli Knowles, David A. |
author_facet | Brown, Brielin C. Morris, John A. Lappalainen, Tuuli Knowles, David A. |
author_sort | Brown, Brielin C. |
collection | PubMed |
description | Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset, inspre helps elucidate the network architecture of blood traits. |
format | Online Article Text |
id | pubmed-10614812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106148122023-10-31 Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits Brown, Brielin C. Morris, John A. Lappalainen, Tuuli Knowles, David A. bioRxiv Article Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset, inspre helps elucidate the network architecture of blood traits. Cold Spring Harbor Laboratory 2023-10-17 /pmc/articles/PMC10614812/ /pubmed/37905013 http://dx.doi.org/10.1101/2023.10.13.562293 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Brown, Brielin C. Morris, John A. Lappalainen, Tuuli Knowles, David A. Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title | Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title_full | Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title_fullStr | Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title_full_unstemmed | Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title_short | Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
title_sort | large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614812/ https://www.ncbi.nlm.nih.gov/pubmed/37905013 http://dx.doi.org/10.1101/2023.10.13.562293 |
work_keys_str_mv | AT brownbrielinc largescalecausaldiscoveryusinginterventionaldatashedslightontheregulatorynetworkarchitectureofbloodtraits AT morrisjohna largescalecausaldiscoveryusinginterventionaldatashedslightontheregulatorynetworkarchitectureofbloodtraits AT lappalainentuuli largescalecausaldiscoveryusinginterventionaldatashedslightontheregulatorynetworkarchitectureofbloodtraits AT knowlesdavida largescalecausaldiscoveryusinginterventionaldatashedslightontheregulatorynetworkarchitectureofbloodtraits |