Cargando…
Modeling naturalistic face processing in humans with deep convolutional neural networks
Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies...
Autores principales: | Jiahui, Guo, Feilong, Ma, Visconti di Oleggio Castello, Matteo, Nastase, Samuel A., Haxby, James V., Gobbini, M. Ida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614847/ https://www.ncbi.nlm.nih.gov/pubmed/37847731 http://dx.doi.org/10.1073/pnas.2304085120 |
Ejemplares similares
-
Shared neural codes for visual and semantic information about familiar faces in a common representational space
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2021) -
An fMRI dataset in response to “The Grand Budapest Hotel”, a socially-rich, naturalistic movie
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2020) -
Familiar Face Detection in 180ms
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2015) -
Familiarity facilitates feature-based face processing
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2017) -
The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception
por: Visconti di Oleggio Castello, Matteo, et al.
Publicado: (2017)