Cargando…
CENsible: Interpretable Insights into Small-Molecule Binding with Context Explanation Networks
We present a novel and interpretable approach for predicting small-molecule binding affinities using context explanation networks (CENs). Given the specific structure of a protein/ligand complex, our CENsible scoring function uses a deep convolutional neural network to predict the contributions of p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614872/ https://www.ncbi.nlm.nih.gov/pubmed/37904961 http://dx.doi.org/10.1101/2023.10.18.562959 |
Sumario: | We present a novel and interpretable approach for predicting small-molecule binding affinities using context explanation networks (CENs). Given the specific structure of a protein/ligand complex, our CENsible scoring function uses a deep convolutional neural network to predict the contributions of pre-calculated terms to the overall binding affinity. We show that CENsible can effectively distinguish active vs. inactive compounds for many systems. Its primary benefit over related machine-learning scoring functions, however, is that it retains interpretability, allowing researchers to identify the contribution of each pre-calculated term to the final affinity prediction, with implications for subsequent lead optimization. |
---|