Cargando…
CENsible: Interpretable Insights into Small-Molecule Binding with Context Explanation Networks
We present a novel and interpretable approach for predicting small-molecule binding affinities using context explanation networks (CENs). Given the specific structure of a protein/ligand complex, our CENsible scoring function uses a deep convolutional neural network to predict the contributions of p...
Autores principales: | Bhatt, Roshni, Koes, David Ryan, Durrant, Jacob D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614872/ https://www.ncbi.nlm.nih.gov/pubmed/37904961 http://dx.doi.org/10.1101/2023.10.18.562959 |
Ejemplares similares
-
DeepFrag: a deep convolutional neural network for fragment-based lead optimization
por: Green, Harrison, et al.
Publicado: (2021) -
Generating 3D molecules conditional on receptor binding sites with deep generative models
por: Ragoza, Matthew, et al.
Publicado: (2022) -
Small-molecule inhibitor starting points learned from protein–protein interaction inhibitor structure
por: Koes, David Ryan, et al.
Publicado: (2012) -
Putting explainable AI in context: institutional explanations for medical AI
por: Theunissen, Mark, et al.
Publicado: (2022) -
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
por: Ogami, Chika, et al.
Publicado: (2021)