Cargando…
Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. Recently, we found that distinct modules within a murine SE regulate gene expression of master regulatory transcription factor Vsx2 in a developmental stage- and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614883/ https://www.ncbi.nlm.nih.gov/pubmed/37905144 http://dx.doi.org/10.1101/2023.10.17.562742 |
_version_ | 1785129114623016960 |
---|---|
author | Honnell, Victoria Sweeney, Shannon Norrie, Jackie Ramirez, Cody Xu, Beisi Teubner, Brett Lee, Ah Young Bell, Claire Dyer, Michael A. |
author_facet | Honnell, Victoria Sweeney, Shannon Norrie, Jackie Ramirez, Cody Xu, Beisi Teubner, Brett Lee, Ah Young Bell, Claire Dyer, Michael A. |
author_sort | Honnell, Victoria |
collection | PubMed |
description | Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. Recently, we found that distinct modules within a murine SE regulate gene expression of master regulatory transcription factor Vsx2 in a developmental stage- and cell-type specific manner. Vsx2 is expressed in retinal progenitor cells as well as differentiated bipolar neurons and Müller glia. Mutations in VSX2 in humans and mice lead to microphthalmia due to a defect in retinal progenitor cell proliferation. Deletion of a single module within the Vsx2 SE leads to microphthalmia. Deletion of a separate module within the SE leads to a complete loss of bipolar neurons, yet the remainder of the retina develops normally. Furthermore, the Vsx2 SE is evolutionarily conserved in vertebrates, suggesting that these modules are important for retinal development across species. In the present study, we examine the ability of these modules to drive retinal development between species. By inserting the human build of one Vsx2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the implications of these SE modules in a model of human development, we generated human retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module leads to a complete loss of ON cone bipolar neurons. This prototypical SE serves as a model for uncoupling developmental stage- and cell-type specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease. |
format | Online Article Text |
id | pubmed-10614883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106148832023-10-31 Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development Honnell, Victoria Sweeney, Shannon Norrie, Jackie Ramirez, Cody Xu, Beisi Teubner, Brett Lee, Ah Young Bell, Claire Dyer, Michael A. bioRxiv Article Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. Recently, we found that distinct modules within a murine SE regulate gene expression of master regulatory transcription factor Vsx2 in a developmental stage- and cell-type specific manner. Vsx2 is expressed in retinal progenitor cells as well as differentiated bipolar neurons and Müller glia. Mutations in VSX2 in humans and mice lead to microphthalmia due to a defect in retinal progenitor cell proliferation. Deletion of a single module within the Vsx2 SE leads to microphthalmia. Deletion of a separate module within the SE leads to a complete loss of bipolar neurons, yet the remainder of the retina develops normally. Furthermore, the Vsx2 SE is evolutionarily conserved in vertebrates, suggesting that these modules are important for retinal development across species. In the present study, we examine the ability of these modules to drive retinal development between species. By inserting the human build of one Vsx2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the implications of these SE modules in a model of human development, we generated human retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module leads to a complete loss of ON cone bipolar neurons. This prototypical SE serves as a model for uncoupling developmental stage- and cell-type specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease. Cold Spring Harbor Laboratory 2023-10-17 /pmc/articles/PMC10614883/ /pubmed/37905144 http://dx.doi.org/10.1101/2023.10.17.562742 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Honnell, Victoria Sweeney, Shannon Norrie, Jackie Ramirez, Cody Xu, Beisi Teubner, Brett Lee, Ah Young Bell, Claire Dyer, Michael A. Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title | Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title_full | Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title_fullStr | Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title_full_unstemmed | Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title_short | Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development |
title_sort | identification of evolutionarily conserved vsx2 enhancers in retinal development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614883/ https://www.ncbi.nlm.nih.gov/pubmed/37905144 http://dx.doi.org/10.1101/2023.10.17.562742 |
work_keys_str_mv | AT honnellvictoria identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT sweeneyshannon identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT norriejackie identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT ramirezcody identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT xubeisi identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT teubnerbrett identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT leeahyoung identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT bellclaire identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment AT dyermichaela identificationofevolutionarilyconservedvsx2enhancersinretinaldevelopment |