Cargando…
The E3 ubiquitin ligase RNF216 contains a linear ubiquitin chain-determining-like domain that functions to regulate dendritic arborization and dendritic spine type in hippocampal neurons
Of the hundreds of E3 ligases found in the human genome, the RING-between RING (RBR) E3 ligase in the LUBAC (linear ubiquitin chain assembly complex) complex HOIP (HOIL-1-interacting protein or RNF31), contains a unique domain called LDD (linear ubiquitin chain determining domain). HOIP is the only...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614953/ https://www.ncbi.nlm.nih.gov/pubmed/37905043 http://dx.doi.org/10.1101/2023.10.19.563080 |
Sumario: | Of the hundreds of E3 ligases found in the human genome, the RING-between RING (RBR) E3 ligase in the LUBAC (linear ubiquitin chain assembly complex) complex HOIP (HOIL-1-interacting protein or RNF31), contains a unique domain called LDD (linear ubiquitin chain determining domain). HOIP is the only E3 ligase known to form linear ubiquitin chains, which regulate inflammatory responses and cell death via activation of the NF-κB pathway. We identified an amino acid sequence within the RNF216 E3 ligase that shares homology to the LDD domain found in HOIP (R2-C). Here, we show that the R2-C domain of RNF216 promotes self-assembly of all ubiquitin chains, with a dominance for those assembled via K63-linkages. Deletion of the R2-C domain altered RNF216 localization, reduced dendritic complexity and changed the distribution of apical dendritic spine morphology types in primary hippocampal neurons. These changes were independent of the RNF216 RBR catalytic activity as expression of a catalytic inactive version of RNF216 had no effect. These data show that the R2-C domain of RNF216 diverges in ubiquitin assembly function from the LDD of HOIP and and functions independently of RNF216 catalytic activity to regulate dendrite development in neurons. |
---|