Cargando…
NeurostimML: A machine learning model for predicting neurostimulation-induced tissue damage
OBJECTIVE. The safe delivery of electrical current to neural tissue depends on many factors, yet previous methods for predicting tissue damage rely on only a few stimulation parameters. Here, we report the development of a machine learning approach that could lead to a more reliable method for predi...
Autores principales: | Li, Yi, Frederick, Rebecca A., George, Daniel, Cogan, Stuart F., Pancrazio, Joseph J., Bleris, Leonidas, Hernandez-Reynoso, Ana G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614958/ https://www.ncbi.nlm.nih.gov/pubmed/37905012 http://dx.doi.org/10.1101/2023.10.18.562980 |
Ejemplares similares
-
Neurostimulation
por: Knotkova, Helena, et al.
Publicado: (2016) -
Editorial for the Special Issue on Neural Electrodes: Design and Applications
por: Pancrazio, Joseph J., et al.
Publicado: (2019) -
Motor Cortex Neurostimulation Technologies for Chronic Post-stroke Pain: Implications of Tissue Damage on Stimulation Currents
por: O’Brien, Anthony T., et al.
Publicado: (2016) -
Invasive neurostimulation
por: Mercieri, Marco, et al.
Publicado: (2015) -
Electrical Neurostimulation Promotes Brown Adipose Tissue Thermogenesis
por: Li, Zhuang, et al.
Publicado: (2020)