Cargando…
Noise driven phase transitions in eco-evolutionary systems
In complex ecosystems such as microbial communities, there is constant ecological and evolutionary feedback between the residing species and the environment occurring on concurrent timescales. Species respond and adapt to their surroundings by modifying their phenotypic traits, which in turn alters...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614967/ https://www.ncbi.nlm.nih.gov/pubmed/37904744 |
_version_ | 1785129127474364416 |
---|---|
author | Wu, Jim Schwab, David J. GrandPre, Trevor |
author_facet | Wu, Jim Schwab, David J. GrandPre, Trevor |
author_sort | Wu, Jim |
collection | PubMed |
description | In complex ecosystems such as microbial communities, there is constant ecological and evolutionary feedback between the residing species and the environment occurring on concurrent timescales. Species respond and adapt to their surroundings by modifying their phenotypic traits, which in turn alters their environment and the resources available. To study this interplay between ecological and evolutionary mechanisms, we develop a consumer-resource model that incorporates phenotypic mutations. In the absence of noise, we find that phase transitions require finely-tuned interaction kernels. Additionally, we quantify the effects of noise on frequency dependent selection by defining a time-integrated mutation current, which accounts for the rate at which mutations and speciation occurs. We find three distinct phases: homogeneous, patterned, and patterned traveling waves. The last phase represents one way in which co-evolution of species can happen in a fluctuating environment. Our results highlight the principal roles that noise and non-reciprocal interactions between resources and consumers play in phase transitions within eco-evolutionary systems. |
format | Online Article Text |
id | pubmed-10614967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-106149672023-10-31 Noise driven phase transitions in eco-evolutionary systems Wu, Jim Schwab, David J. GrandPre, Trevor ArXiv Article In complex ecosystems such as microbial communities, there is constant ecological and evolutionary feedback between the residing species and the environment occurring on concurrent timescales. Species respond and adapt to their surroundings by modifying their phenotypic traits, which in turn alters their environment and the resources available. To study this interplay between ecological and evolutionary mechanisms, we develop a consumer-resource model that incorporates phenotypic mutations. In the absence of noise, we find that phase transitions require finely-tuned interaction kernels. Additionally, we quantify the effects of noise on frequency dependent selection by defining a time-integrated mutation current, which accounts for the rate at which mutations and speciation occurs. We find three distinct phases: homogeneous, patterned, and patterned traveling waves. The last phase represents one way in which co-evolution of species can happen in a fluctuating environment. Our results highlight the principal roles that noise and non-reciprocal interactions between resources and consumers play in phase transitions within eco-evolutionary systems. Cornell University 2023-10-16 /pmc/articles/PMC10614967/ /pubmed/37904744 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Wu, Jim Schwab, David J. GrandPre, Trevor Noise driven phase transitions in eco-evolutionary systems |
title | Noise driven phase transitions in eco-evolutionary systems |
title_full | Noise driven phase transitions in eco-evolutionary systems |
title_fullStr | Noise driven phase transitions in eco-evolutionary systems |
title_full_unstemmed | Noise driven phase transitions in eco-evolutionary systems |
title_short | Noise driven phase transitions in eco-evolutionary systems |
title_sort | noise driven phase transitions in eco-evolutionary systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614967/ https://www.ncbi.nlm.nih.gov/pubmed/37904744 |
work_keys_str_mv | AT wujim noisedrivenphasetransitionsinecoevolutionarysystems AT schwabdavidj noisedrivenphasetransitionsinecoevolutionarysystems AT grandpretrevor noisedrivenphasetransitionsinecoevolutionarysystems |