Cargando…
ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a protein language diffusion model
Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical...
Autores principales: | Ni, Bo, Kaplan, David L., Buehler, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614992/ https://www.ncbi.nlm.nih.gov/pubmed/37904735 |
Ejemplares similares
-
ForceGen: atomic covalent bond value derivation for Gromacs
por: Nash, Anthony, et al.
Publicado: (2017) -
Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen
por: Jain, Ajay N., et al.
Publicado: (2019) -
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
por: Cleves, Ann E., et al.
Publicado: (2017) -
End-to-end protein–ligand complex structure generation with diffusion-based generative models
por: Nakata, Shuya, et al.
Publicado: (2023) -
GenPADS: Reinforcing politeness in an end-to-end dialogue system
por: Mishra, Kshitij, et al.
Publicado: (2023)