Cargando…
What's Missing from Data Modernization? A Focus on Structural Racism
Public health data modernization efforts frequently overlook the far-reaching effects of structural racism across the data life cycle. Modernizing data requires creating data ecosystems grounded in six principles: dismantling structural racism and building community power explicitly; centering justi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615079/ https://www.ncbi.nlm.nih.gov/pubmed/37908401 http://dx.doi.org/10.1089/heq.2023.0086 |
Sumario: | Public health data modernization efforts frequently overlook the far-reaching effects of structural racism across the data life cycle. Modernizing data requires creating data ecosystems grounded in six principles: dismantling structural racism and building community power explicitly; centering justice in all stages of data collection and analysis; ensuring communities can govern their data; driving positive population-level change; engaging nonprofit organizations; and obtaining commitments from governments to make changes in policy and practice. As government agencies spearhead and finance data modernization initiatives, it is imperative that they address structural racism head-on and integrate these principles into all aspects of their work. |
---|