Cargando…

Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases

INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Romijnders, Robbin, Salis, Francesca, Hansen, Clint, Küderle, Arne, Paraschiv-Ionescu, Anisoara, Cereatti, Andrea, Alcock, Lisa, Aminian, Kamiar, Becker, Clemens, Bertuletti, Stefano, Bonci, Tecla, Brown, Philip, Buckley, Ellen, Cantu, Alma, Carsin, Anne-Elie, Caruso, Marco, Caulfield, Brian, Chiari, Lorenzo, D'Ascanio, Ilaria, Del Din, Silvia, Eskofier, Björn, Fernstad, Sara Johansson, Fröhlich, Marceli Stanislaw, Garcia Aymerich, Judith, Gazit, Eran, Hausdorff, Jeffrey M., Hiden, Hugo, Hume, Emily, Keogh, Alison, Kirk, Cameron, Kluge, Felix, Koch, Sarah, Mazzà, Claudia, Megaritis, Dimitrios, Micó-Amigo, Encarna, Müller, Arne, Palmerini, Luca, Rochester, Lynn, Schwickert, Lars, Scott, Kirsty, Sharrack, Basil, Singleton, David, Soltani, Abolfazl, Ullrich, Martin, Vereijken, Beatrix, Vogiatzis, Ioannis, Yarnall, Alison, Schmidt, Gerhard, Maetzler, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615212/
https://www.ncbi.nlm.nih.gov/pubmed/37909030
http://dx.doi.org/10.3389/fneur.2023.1247532
_version_ 1785129173673574400
author Romijnders, Robbin
Salis, Francesca
Hansen, Clint
Küderle, Arne
Paraschiv-Ionescu, Anisoara
Cereatti, Andrea
Alcock, Lisa
Aminian, Kamiar
Becker, Clemens
Bertuletti, Stefano
Bonci, Tecla
Brown, Philip
Buckley, Ellen
Cantu, Alma
Carsin, Anne-Elie
Caruso, Marco
Caulfield, Brian
Chiari, Lorenzo
D'Ascanio, Ilaria
Del Din, Silvia
Eskofier, Björn
Fernstad, Sara Johansson
Fröhlich, Marceli Stanislaw
Garcia Aymerich, Judith
Gazit, Eran
Hausdorff, Jeffrey M.
Hiden, Hugo
Hume, Emily
Keogh, Alison
Kirk, Cameron
Kluge, Felix
Koch, Sarah
Mazzà, Claudia
Megaritis, Dimitrios
Micó-Amigo, Encarna
Müller, Arne
Palmerini, Luca
Rochester, Lynn
Schwickert, Lars
Scott, Kirsty
Sharrack, Basil
Singleton, David
Soltani, Abolfazl
Ullrich, Martin
Vereijken, Beatrix
Vogiatzis, Ioannis
Yarnall, Alison
Schmidt, Gerhard
Maetzler, Walter
author_facet Romijnders, Robbin
Salis, Francesca
Hansen, Clint
Küderle, Arne
Paraschiv-Ionescu, Anisoara
Cereatti, Andrea
Alcock, Lisa
Aminian, Kamiar
Becker, Clemens
Bertuletti, Stefano
Bonci, Tecla
Brown, Philip
Buckley, Ellen
Cantu, Alma
Carsin, Anne-Elie
Caruso, Marco
Caulfield, Brian
Chiari, Lorenzo
D'Ascanio, Ilaria
Del Din, Silvia
Eskofier, Björn
Fernstad, Sara Johansson
Fröhlich, Marceli Stanislaw
Garcia Aymerich, Judith
Gazit, Eran
Hausdorff, Jeffrey M.
Hiden, Hugo
Hume, Emily
Keogh, Alison
Kirk, Cameron
Kluge, Felix
Koch, Sarah
Mazzà, Claudia
Megaritis, Dimitrios
Micó-Amigo, Encarna
Müller, Arne
Palmerini, Luca
Rochester, Lynn
Schwickert, Lars
Scott, Kirsty
Sharrack, Basil
Singleton, David
Soltani, Abolfazl
Ullrich, Martin
Vereijken, Beatrix
Vogiatzis, Ioannis
Yarnall, Alison
Schmidt, Gerhard
Maetzler, Walter
author_sort Romijnders, Robbin
collection PubMed
description INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. METHODS: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. RESULTS AND DISCUSSION: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of −0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, −0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.
format Online
Article
Text
id pubmed-10615212
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-106152122023-10-31 Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases Romijnders, Robbin Salis, Francesca Hansen, Clint Küderle, Arne Paraschiv-Ionescu, Anisoara Cereatti, Andrea Alcock, Lisa Aminian, Kamiar Becker, Clemens Bertuletti, Stefano Bonci, Tecla Brown, Philip Buckley, Ellen Cantu, Alma Carsin, Anne-Elie Caruso, Marco Caulfield, Brian Chiari, Lorenzo D'Ascanio, Ilaria Del Din, Silvia Eskofier, Björn Fernstad, Sara Johansson Fröhlich, Marceli Stanislaw Garcia Aymerich, Judith Gazit, Eran Hausdorff, Jeffrey M. Hiden, Hugo Hume, Emily Keogh, Alison Kirk, Cameron Kluge, Felix Koch, Sarah Mazzà, Claudia Megaritis, Dimitrios Micó-Amigo, Encarna Müller, Arne Palmerini, Luca Rochester, Lynn Schwickert, Lars Scott, Kirsty Sharrack, Basil Singleton, David Soltani, Abolfazl Ullrich, Martin Vereijken, Beatrix Vogiatzis, Ioannis Yarnall, Alison Schmidt, Gerhard Maetzler, Walter Front Neurol Neurology INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. METHODS: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. RESULTS AND DISCUSSION: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of −0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, −0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases. Frontiers Media S.A. 2023-10-16 /pmc/articles/PMC10615212/ /pubmed/37909030 http://dx.doi.org/10.3389/fneur.2023.1247532 Text en Copyright © 2023 Romijnders, Salis, Hansen, Küderle, Paraschiv-Ionescu, Cereatti, Alcock, Aminian, Becker, Bertuletti, Bonci, Brown, Buckley, Cantu, Carsin, Caruso, Caulfield, Chiari, D'Ascanio, Del Din, Eskofier, Fernstad, Fröhlich, Garcia Aymerich, Gazit, Hausdorff, Hiden, Hume, Keogh, Kirk, Kluge, Koch, Mazzà, Megaritis, Micó-Amigo, Müller, Palmerini, Rochester, Schwickert, Scott, Sharrack, Singleton, Soltani, Ullrich, Vereijken, Vogiatzis, Yarnall, Schmidt and Maetzler. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
Romijnders, Robbin
Salis, Francesca
Hansen, Clint
Küderle, Arne
Paraschiv-Ionescu, Anisoara
Cereatti, Andrea
Alcock, Lisa
Aminian, Kamiar
Becker, Clemens
Bertuletti, Stefano
Bonci, Tecla
Brown, Philip
Buckley, Ellen
Cantu, Alma
Carsin, Anne-Elie
Caruso, Marco
Caulfield, Brian
Chiari, Lorenzo
D'Ascanio, Ilaria
Del Din, Silvia
Eskofier, Björn
Fernstad, Sara Johansson
Fröhlich, Marceli Stanislaw
Garcia Aymerich, Judith
Gazit, Eran
Hausdorff, Jeffrey M.
Hiden, Hugo
Hume, Emily
Keogh, Alison
Kirk, Cameron
Kluge, Felix
Koch, Sarah
Mazzà, Claudia
Megaritis, Dimitrios
Micó-Amigo, Encarna
Müller, Arne
Palmerini, Luca
Rochester, Lynn
Schwickert, Lars
Scott, Kirsty
Sharrack, Basil
Singleton, David
Soltani, Abolfazl
Ullrich, Martin
Vereijken, Beatrix
Vogiatzis, Ioannis
Yarnall, Alison
Schmidt, Gerhard
Maetzler, Walter
Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title_full Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title_fullStr Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title_full_unstemmed Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title_short Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
title_sort ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615212/
https://www.ncbi.nlm.nih.gov/pubmed/37909030
http://dx.doi.org/10.3389/fneur.2023.1247532
work_keys_str_mv AT romijndersrobbin ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT salisfrancesca ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT hansenclint ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT kuderlearne ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT paraschivionescuanisoara ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT cereattiandrea ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT alcocklisa ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT aminiankamiar ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT beckerclemens ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT bertulettistefano ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT boncitecla ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT brownphilip ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT buckleyellen ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT cantualma ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT carsinanneelie ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT carusomarco ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT caulfieldbrian ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT chiarilorenzo ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT dascanioilaria ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT deldinsilvia ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT eskofierbjorn ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT fernstadsarajohansson ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT frohlichmarcelistanislaw ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT garciaaymerichjudith ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT gaziteran ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT hausdorffjeffreym ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT hidenhugo ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT humeemily ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT keoghalison ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT kirkcameron ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT klugefelix ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT kochsarah ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT mazzaclaudia ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT megaritisdimitrios ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT micoamigoencarna ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT mullerarne ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT palmeriniluca ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT rochesterlynn ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT schwickertlars ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT scottkirsty ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT sharrackbasil ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT singletondavid ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT soltaniabolfazl ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT ullrichmartin ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT vereijkenbeatrix ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT vogiatzisioannis ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT yarnallalison ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT schmidtgerhard ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases
AT maetzlerwalter ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases