Cargando…
Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases
INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615212/ https://www.ncbi.nlm.nih.gov/pubmed/37909030 http://dx.doi.org/10.3389/fneur.2023.1247532 |
_version_ | 1785129173673574400 |
---|---|
author | Romijnders, Robbin Salis, Francesca Hansen, Clint Küderle, Arne Paraschiv-Ionescu, Anisoara Cereatti, Andrea Alcock, Lisa Aminian, Kamiar Becker, Clemens Bertuletti, Stefano Bonci, Tecla Brown, Philip Buckley, Ellen Cantu, Alma Carsin, Anne-Elie Caruso, Marco Caulfield, Brian Chiari, Lorenzo D'Ascanio, Ilaria Del Din, Silvia Eskofier, Björn Fernstad, Sara Johansson Fröhlich, Marceli Stanislaw Garcia Aymerich, Judith Gazit, Eran Hausdorff, Jeffrey M. Hiden, Hugo Hume, Emily Keogh, Alison Kirk, Cameron Kluge, Felix Koch, Sarah Mazzà, Claudia Megaritis, Dimitrios Micó-Amigo, Encarna Müller, Arne Palmerini, Luca Rochester, Lynn Schwickert, Lars Scott, Kirsty Sharrack, Basil Singleton, David Soltani, Abolfazl Ullrich, Martin Vereijken, Beatrix Vogiatzis, Ioannis Yarnall, Alison Schmidt, Gerhard Maetzler, Walter |
author_facet | Romijnders, Robbin Salis, Francesca Hansen, Clint Küderle, Arne Paraschiv-Ionescu, Anisoara Cereatti, Andrea Alcock, Lisa Aminian, Kamiar Becker, Clemens Bertuletti, Stefano Bonci, Tecla Brown, Philip Buckley, Ellen Cantu, Alma Carsin, Anne-Elie Caruso, Marco Caulfield, Brian Chiari, Lorenzo D'Ascanio, Ilaria Del Din, Silvia Eskofier, Björn Fernstad, Sara Johansson Fröhlich, Marceli Stanislaw Garcia Aymerich, Judith Gazit, Eran Hausdorff, Jeffrey M. Hiden, Hugo Hume, Emily Keogh, Alison Kirk, Cameron Kluge, Felix Koch, Sarah Mazzà, Claudia Megaritis, Dimitrios Micó-Amigo, Encarna Müller, Arne Palmerini, Luca Rochester, Lynn Schwickert, Lars Scott, Kirsty Sharrack, Basil Singleton, David Soltani, Abolfazl Ullrich, Martin Vereijken, Beatrix Vogiatzis, Ioannis Yarnall, Alison Schmidt, Gerhard Maetzler, Walter |
author_sort | Romijnders, Robbin |
collection | PubMed |
description | INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. METHODS: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. RESULTS AND DISCUSSION: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of −0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, −0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases. |
format | Online Article Text |
id | pubmed-10615212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106152122023-10-31 Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases Romijnders, Robbin Salis, Francesca Hansen, Clint Küderle, Arne Paraschiv-Ionescu, Anisoara Cereatti, Andrea Alcock, Lisa Aminian, Kamiar Becker, Clemens Bertuletti, Stefano Bonci, Tecla Brown, Philip Buckley, Ellen Cantu, Alma Carsin, Anne-Elie Caruso, Marco Caulfield, Brian Chiari, Lorenzo D'Ascanio, Ilaria Del Din, Silvia Eskofier, Björn Fernstad, Sara Johansson Fröhlich, Marceli Stanislaw Garcia Aymerich, Judith Gazit, Eran Hausdorff, Jeffrey M. Hiden, Hugo Hume, Emily Keogh, Alison Kirk, Cameron Kluge, Felix Koch, Sarah Mazzà, Claudia Megaritis, Dimitrios Micó-Amigo, Encarna Müller, Arne Palmerini, Luca Rochester, Lynn Schwickert, Lars Scott, Kirsty Sharrack, Basil Singleton, David Soltani, Abolfazl Ullrich, Martin Vereijken, Beatrix Vogiatzis, Ioannis Yarnall, Alison Schmidt, Gerhard Maetzler, Walter Front Neurol Neurology INTRODUCTION: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. METHODS: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. RESULTS AND DISCUSSION: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of −0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, −0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases. Frontiers Media S.A. 2023-10-16 /pmc/articles/PMC10615212/ /pubmed/37909030 http://dx.doi.org/10.3389/fneur.2023.1247532 Text en Copyright © 2023 Romijnders, Salis, Hansen, Küderle, Paraschiv-Ionescu, Cereatti, Alcock, Aminian, Becker, Bertuletti, Bonci, Brown, Buckley, Cantu, Carsin, Caruso, Caulfield, Chiari, D'Ascanio, Del Din, Eskofier, Fernstad, Fröhlich, Garcia Aymerich, Gazit, Hausdorff, Hiden, Hume, Keogh, Kirk, Kluge, Koch, Mazzà, Megaritis, Micó-Amigo, Müller, Palmerini, Rochester, Schwickert, Scott, Sharrack, Singleton, Soltani, Ullrich, Vereijken, Vogiatzis, Yarnall, Schmidt and Maetzler. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Romijnders, Robbin Salis, Francesca Hansen, Clint Küderle, Arne Paraschiv-Ionescu, Anisoara Cereatti, Andrea Alcock, Lisa Aminian, Kamiar Becker, Clemens Bertuletti, Stefano Bonci, Tecla Brown, Philip Buckley, Ellen Cantu, Alma Carsin, Anne-Elie Caruso, Marco Caulfield, Brian Chiari, Lorenzo D'Ascanio, Ilaria Del Din, Silvia Eskofier, Björn Fernstad, Sara Johansson Fröhlich, Marceli Stanislaw Garcia Aymerich, Judith Gazit, Eran Hausdorff, Jeffrey M. Hiden, Hugo Hume, Emily Keogh, Alison Kirk, Cameron Kluge, Felix Koch, Sarah Mazzà, Claudia Megaritis, Dimitrios Micó-Amigo, Encarna Müller, Arne Palmerini, Luca Rochester, Lynn Schwickert, Lars Scott, Kirsty Sharrack, Basil Singleton, David Soltani, Abolfazl Ullrich, Martin Vereijken, Beatrix Vogiatzis, Ioannis Yarnall, Alison Schmidt, Gerhard Maetzler, Walter Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title | Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title_full | Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title_fullStr | Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title_full_unstemmed | Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title_short | Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
title_sort | ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615212/ https://www.ncbi.nlm.nih.gov/pubmed/37909030 http://dx.doi.org/10.3389/fneur.2023.1247532 |
work_keys_str_mv | AT romijndersrobbin ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT salisfrancesca ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT hansenclint ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT kuderlearne ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT paraschivionescuanisoara ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT cereattiandrea ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT alcocklisa ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT aminiankamiar ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT beckerclemens ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT bertulettistefano ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT boncitecla ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT brownphilip ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT buckleyellen ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT cantualma ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT carsinanneelie ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT carusomarco ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT caulfieldbrian ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT chiarilorenzo ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT dascanioilaria ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT deldinsilvia ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT eskofierbjorn ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT fernstadsarajohansson ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT frohlichmarcelistanislaw ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT garciaaymerichjudith ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT gaziteran ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT hausdorffjeffreym ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT hidenhugo ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT humeemily ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT keoghalison ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT kirkcameron ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT klugefelix ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT kochsarah ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT mazzaclaudia ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT megaritisdimitrios ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT micoamigoencarna ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT mullerarne ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT palmeriniluca ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT rochesterlynn ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT schwickertlars ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT scottkirsty ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT sharrackbasil ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT singletondavid ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT soltaniabolfazl ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT ullrichmartin ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT vereijkenbeatrix ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT vogiatzisioannis ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT yarnallalison ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT schmidtgerhard ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases AT maetzlerwalter ecologicalvalidityofadeeplearningalgorithmtodetectgaiteventsfromreallifewalkingboutsinmobilitylimitingdiseases |