Cargando…
Significant wave height prediction from X-band marine radar images using deep learning with 3D convolutions
This research introduces a deep learning method for ocean wave height estimation utilizing a Convolutional Neural Network (CNN) based on the VGGNet. The model is trained on a dataset comprising buoy wave heights and radar images, both critical for marine engineering. The dataset features X-band rada...
Autores principales: | Kwon, Ji-Woo, Chang, Won-Du, Yang, Young Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615293/ https://www.ncbi.nlm.nih.gov/pubmed/37903150 http://dx.doi.org/10.1371/journal.pone.0292884 |
Ejemplares similares
-
On the Effect of Interferences on X-Band Radar Wave Measurements
por: Chernyshov, Pavel, et al.
Publicado: (2022) -
A Coherent on Receive X-Band Marine Radar for Ocean Observations
por: Horstmann, Jochen, et al.
Publicado: (2021) -
Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments
por: Liu, Peng, et al.
Publicado: (2017) -
An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area
por: Ludeno, Giovanni, et al.
Publicado: (2015) -
Oil spill identification in X-band marine radar image using K-means and texture feature
por: Chen, Rong, et al.
Publicado: (2022)