Cargando…
Distilling identifiable and interpretable dynamic models from biological data
Mechanistic dynamical models allow us to study the behavior of complex biological systems. They can provide an objective and quantitative understanding that would be difficult to achieve through other means. However, the systematic development of these models is a non-trivial exercise and an open pr...
Autores principales: | Massonis, Gemma, Villaverde, Alejandro F., Banga, Julio R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615316/ https://www.ncbi.nlm.nih.gov/pubmed/37851682 http://dx.doi.org/10.1371/journal.pcbi.1011014 |
Ejemplares similares
-
Structural identifiability and observability of compartmental models of the COVID-19 pandemic()
por: Massonis, Gemma, et al.
Publicado: (2021) -
Improving dynamic predictions with ensembles of observable models
por: Massonis, Gemma, et al.
Publicado: (2022) -
Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation
por: Villaverde, Alejandro F., et al.
Publicado: (2017) -
On testing structural identifiability by a simple scaling method: Relying on scaling symmetries can be misleading
por: Villaverde, Alejandro F., et al.
Publicado: (2021) -
Data-driven reverse engineering of signaling pathways using ensembles of dynamic models
por: Henriques, David, et al.
Publicado: (2017)