Cargando…
COVID-19 studies involving machine learning methods: A bibliometric study
BACKGROUND: Machine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615482/ https://www.ncbi.nlm.nih.gov/pubmed/37904407 http://dx.doi.org/10.1097/MD.0000000000035564 |
_version_ | 1785129231725887488 |
---|---|
author | Baygül Eden, Arzu Bakir Kayi, Alev Erdem, Mustafa Genco Demirci, Mehmet |
author_facet | Baygül Eden, Arzu Bakir Kayi, Alev Erdem, Mustafa Genco Demirci, Mehmet |
author_sort | Baygül Eden, Arzu |
collection | PubMed |
description | BACKGROUND: Machine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies the quality and impact of scholarly publications. ML in COVID-19 research is the focus of this bibliometric analysis. METHODS: A comprehensive literature study found ML-based COVID-19 research. Web of Science (WoS) was used for the study. The searches included “machine learning,” “artificial intelligence,” and COVID-19. To find all relevant studies, 2 reviewers searched independently. The network visualization was analyzed using VOSviewer 1.6.19. RESULTS: In the WoS Core, the average citation count was 13.6 ± 41.3. The main research areas were computer science, engineering, and science and technology. According to document count, Tao Huang wrote 14 studies, Fadi Al-Turjman wrote 11, and Imran Ashraf wrote 11. The US, China, and India produced the most studies and citations. The most prolific research institutions were Harvard Medical School, Huazhong University of Science and Technology, and King Abdulaziz University. In contrast, Nankai University, Oxford, and Imperial College London were the most mentioned organizations, reflecting their significant research contributions. First, “Covid-19” appeared 1983 times, followed by “machine learning” and “deep learning.” The US Department of Health and Human Services funded this topic most heavily. Huang Tao, Feng Kaiyan, and Ashraf Imran pioneered bibliographic coupling. CONCLUSION: This study provides useful insights for academics and clinicians studying COVID-19 using ML. Through bibliometric data analysis, scholars can learn about highly recognized and productive authors and countries, as well as the publications with the most citations and keywords. New data and methodologies from the pandemic are expected to advance ML and AI modeling. It is crucial to recognize that these studies will pioneer this subject. |
format | Online Article Text |
id | pubmed-10615482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-106154822023-10-31 COVID-19 studies involving machine learning methods: A bibliometric study Baygül Eden, Arzu Bakir Kayi, Alev Erdem, Mustafa Genco Demirci, Mehmet Medicine (Baltimore) 4900 BACKGROUND: Machine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies the quality and impact of scholarly publications. ML in COVID-19 research is the focus of this bibliometric analysis. METHODS: A comprehensive literature study found ML-based COVID-19 research. Web of Science (WoS) was used for the study. The searches included “machine learning,” “artificial intelligence,” and COVID-19. To find all relevant studies, 2 reviewers searched independently. The network visualization was analyzed using VOSviewer 1.6.19. RESULTS: In the WoS Core, the average citation count was 13.6 ± 41.3. The main research areas were computer science, engineering, and science and technology. According to document count, Tao Huang wrote 14 studies, Fadi Al-Turjman wrote 11, and Imran Ashraf wrote 11. The US, China, and India produced the most studies and citations. The most prolific research institutions were Harvard Medical School, Huazhong University of Science and Technology, and King Abdulaziz University. In contrast, Nankai University, Oxford, and Imperial College London were the most mentioned organizations, reflecting their significant research contributions. First, “Covid-19” appeared 1983 times, followed by “machine learning” and “deep learning.” The US Department of Health and Human Services funded this topic most heavily. Huang Tao, Feng Kaiyan, and Ashraf Imran pioneered bibliographic coupling. CONCLUSION: This study provides useful insights for academics and clinicians studying COVID-19 using ML. Through bibliometric data analysis, scholars can learn about highly recognized and productive authors and countries, as well as the publications with the most citations and keywords. New data and methodologies from the pandemic are expected to advance ML and AI modeling. It is crucial to recognize that these studies will pioneer this subject. Lippincott Williams & Wilkins 2023-10-27 /pmc/articles/PMC10615482/ /pubmed/37904407 http://dx.doi.org/10.1097/MD.0000000000035564 Text en Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. |
spellingShingle | 4900 Baygül Eden, Arzu Bakir Kayi, Alev Erdem, Mustafa Genco Demirci, Mehmet COVID-19 studies involving machine learning methods: A bibliometric study |
title | COVID-19 studies involving machine learning methods: A bibliometric study |
title_full | COVID-19 studies involving machine learning methods: A bibliometric study |
title_fullStr | COVID-19 studies involving machine learning methods: A bibliometric study |
title_full_unstemmed | COVID-19 studies involving machine learning methods: A bibliometric study |
title_short | COVID-19 studies involving machine learning methods: A bibliometric study |
title_sort | covid-19 studies involving machine learning methods: a bibliometric study |
topic | 4900 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615482/ https://www.ncbi.nlm.nih.gov/pubmed/37904407 http://dx.doi.org/10.1097/MD.0000000000035564 |
work_keys_str_mv | AT bayguledenarzu covid19studiesinvolvingmachinelearningmethodsabibliometricstudy AT bakirkayialev covid19studiesinvolvingmachinelearningmethodsabibliometricstudy AT erdemmustafagenco covid19studiesinvolvingmachinelearningmethodsabibliometricstudy AT demircimehmet covid19studiesinvolvingmachinelearningmethodsabibliometricstudy |