Cargando…
COVID-19 studies involving machine learning methods: A bibliometric study
BACKGROUND: Machine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies t...
Autores principales: | Baygül Eden, Arzu, Bakir Kayi, Alev, Erdem, Mustafa Genco, Demirci, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615482/ https://www.ncbi.nlm.nih.gov/pubmed/37904407 http://dx.doi.org/10.1097/MD.0000000000035564 |
Ejemplares similares
-
Evaluation of the effect of the COVID-19 pandemic on mucormycosis studies with bibliometric analysis
por: Arslan Gulen, Tugba, et al.
Publicado: (2022) -
Trends of spinal tuberculosis research (1994–2015): A bibliometric study
por: Wang, Yiran, et al.
Publicado: (2016) -
Classics of infectious diseases: A bibliometric analysis of the 100 most cited articles
por: Yilmaz Hanci, Sevgi
Publicado: (2023) -
An effective salivation-facilitating method for COVID-19 testing: An experimental study
por: Higashijima, Misako, et al.
Publicado: (2023) -
Recurrent Kawasaki Disease in a Child With Retropharyngeal Involvement: A Case Report and Literature Review
por: Aldemir-Kocabaş, Bilge, et al.
Publicado: (2014)