Cargando…

Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network

Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of...

Descripción completa

Detalles Bibliográficos
Autores principales: Magloire, Vincent, Savtchenko, Leonid P., Jensen, Thomas P., Sylantyev, Sergyi, Kopach, Olga, Cole, Nicholas, Tyurikova, Olga, Kullmann, Dimitri M., Walker, Matthew C., Marvin, Jonathan S., Looger, Loren L., Hasseman, Jeremy P., Kolb, Ilya, Pavlov, Ivan, Rusakov, Dmitri A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615848/
https://www.ncbi.nlm.nih.gov/pubmed/36921605
http://dx.doi.org/10.1016/j.cub.2023.02.051
_version_ 1785129279727599616
author Magloire, Vincent
Savtchenko, Leonid P.
Jensen, Thomas P.
Sylantyev, Sergyi
Kopach, Olga
Cole, Nicholas
Tyurikova, Olga
Kullmann, Dimitri M.
Walker, Matthew C.
Marvin, Jonathan S.
Looger, Loren L.
Hasseman, Jeremy P.
Kolb, Ilya
Pavlov, Ivan
Rusakov, Dmitri A.
author_facet Magloire, Vincent
Savtchenko, Leonid P.
Jensen, Thomas P.
Sylantyev, Sergyi
Kopach, Olga
Cole, Nicholas
Tyurikova, Olga
Kullmann, Dimitri M.
Walker, Matthew C.
Marvin, Jonathan S.
Looger, Loren L.
Hasseman, Jeremy P.
Kolb, Ilya
Pavlov, Ivan
Rusakov, Dmitri A.
author_sort Magloire, Vincent
collection PubMed
description Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (G(tonic)) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA “sniffer” and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations—without affecting synaptic GABAergic transmission or resting GABA levels—slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
format Online
Article
Text
id pubmed-10615848
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-106158482023-11-01 Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network Magloire, Vincent Savtchenko, Leonid P. Jensen, Thomas P. Sylantyev, Sergyi Kopach, Olga Cole, Nicholas Tyurikova, Olga Kullmann, Dimitri M. Walker, Matthew C. Marvin, Jonathan S. Looger, Loren L. Hasseman, Jeremy P. Kolb, Ilya Pavlov, Ivan Rusakov, Dmitri A. Curr Biol Article Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (G(tonic)) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA “sniffer” and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations—without affecting synaptic GABAergic transmission or resting GABA levels—slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks. Cell Press 2023-04-10 /pmc/articles/PMC10615848/ /pubmed/36921605 http://dx.doi.org/10.1016/j.cub.2023.02.051 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Magloire, Vincent
Savtchenko, Leonid P.
Jensen, Thomas P.
Sylantyev, Sergyi
Kopach, Olga
Cole, Nicholas
Tyurikova, Olga
Kullmann, Dimitri M.
Walker, Matthew C.
Marvin, Jonathan S.
Looger, Loren L.
Hasseman, Jeremy P.
Kolb, Ilya
Pavlov, Ivan
Rusakov, Dmitri A.
Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title_full Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title_fullStr Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title_full_unstemmed Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title_short Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
title_sort volume-transmitted gaba waves pace epileptiform rhythms in the hippocampal network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615848/
https://www.ncbi.nlm.nih.gov/pubmed/36921605
http://dx.doi.org/10.1016/j.cub.2023.02.051
work_keys_str_mv AT magloirevincent volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT savtchenkoleonidp volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT jensenthomasp volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT sylantyevsergyi volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT kopacholga volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT colenicholas volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT tyurikovaolga volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT kullmanndimitrim volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT walkermatthewc volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT marvinjonathans volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT loogerlorenl volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT hassemanjeremyp volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT kolbilya volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT pavlovivan volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork
AT rusakovdmitria volumetransmittedgabawavespaceepileptiformrhythmsinthehippocampalnetwork