Cargando…
Graph convolutional networks: a comprehensive review
Graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However,...
Autores principales: | Zhang, Si, Tong, Hanghang, Xu, Jiejun, Maciejewski, Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615927/ https://www.ncbi.nlm.nih.gov/pubmed/37915858 http://dx.doi.org/10.1186/s40649-019-0069-y |
Ejemplares similares
-
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Comprehensive Exploration of Target‐specific Ligands Using a Graph Convolution Neural Network
por: Miyazaki, Yu, et al.
Publicado: (2019) -
Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network
por: Liang, Xiaoling, et al.
Publicado: (2021) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023)