Cargando…

Generalized teleparallel de Sitter geometries

Theories of gravity based on teleparallel geometries are characterized by the torsion, which is a function of the coframe, derivatives of the coframe, and a zero curvature and metric compatible spin-connection. The appropriate notion of a symmetry in a teleparallel geometry is that of an affine symm...

Descripción completa

Detalles Bibliográficos
Autores principales: Coley, A. A., Landry, A., van den Hoogen, R. J., McNutt, D. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615945/
https://www.ncbi.nlm.nih.gov/pubmed/37915991
http://dx.doi.org/10.1140/epjc/s10052-023-12150-1
Descripción
Sumario:Theories of gravity based on teleparallel geometries are characterized by the torsion, which is a function of the coframe, derivatives of the coframe, and a zero curvature and metric compatible spin-connection. The appropriate notion of a symmetry in a teleparallel geometry is that of an affine symmetry. Due to the importance of the de Sitter geometry and Einstein spaces within General Relativity, we shall describe teleparallel de Sitter geometries and discuss their possible generalizations. In particular, we shall analyse a class of Einstein teleparallel geometries which have a 4-dimensional Lie algebra of affine symmetries, and display two one-parameter families of explicit exact solutions.