Cargando…
Assessment of the ground vibration during blasting in mining projects using different computational approaches
The investigation compares the conventional, advanced machine, deep, and hybrid learning models to introduce an optimum computational model to assess the ground vibrations during blasting in mining projects. The long short-term memory (LSTM), artificial neural network (ANN), least square support vec...
Autores principales: | Hosseini, Shahab, Khatti, Jitendra, Taiwo, Blessing Olamide, Fissha, Yewuhalashet, Grover, Kamaldeep Singh, Ikeda, Hajime, Pushkarna, Mukesh, Berhanu, Milkias, Ali, Mujahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616075/ https://www.ncbi.nlm.nih.gov/pubmed/37903881 http://dx.doi.org/10.1038/s41598-023-46064-5 |
Ejemplares similares
-
Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques
por: Hosseini, Shahab, et al.
Publicado: (2023) -
Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting
por: Kostić, Srđan, et al.
Publicado: (2013) -
Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Vibration Sensors and Support Vector Regression-Based Optimization Algorithms
por: Nguyen, Hoang, et al.
Publicado: (2019) -
A combination of fuzzy Delphi method and hybrid ANN-based systems to forecast ground vibration resulting from blasting
por: Huang, Jiandong, et al.
Publicado: (2020) -
Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data
por: Tu, Shengwu, et al.
Publicado: (2023)