Cargando…

Talin-1 inhibits Smurf1-mediated Stat3 degradation to modulate β-cell proliferation and mass in mice

Insufficient pancreatic β-cell mass and reduced insulin expression are key events in the pathogenesis of diabetes mellitus (DM). Here we demonstrate the high expression of Talin-1 in β-cells and that deficiency of Talin-1 reduces β-cell proliferation, which leads to reduced β-cell mass and insulin e...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Xiaoting, Chen, Yangshan, Zhou, Bo, Tang, Wanze, Ding, Zhen, Chen, Litong, Wu, Yun, Yang, Hongyu, Du, Changzheng, Yang, Dazhi, Ma, Guixing, Cao, Huiling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616178/
https://www.ncbi.nlm.nih.gov/pubmed/37903776
http://dx.doi.org/10.1038/s41419-023-06235-8
Descripción
Sumario:Insufficient pancreatic β-cell mass and reduced insulin expression are key events in the pathogenesis of diabetes mellitus (DM). Here we demonstrate the high expression of Talin-1 in β-cells and that deficiency of Talin-1 reduces β-cell proliferation, which leads to reduced β-cell mass and insulin expression, thus causing glucose intolerance without affecting peripheral insulin sensitivity in mice. High-fat diet fed exerbates these phenotypes. Mechanistically, Talin-1 interacts with the E3 ligase smad ubiquitination regulatory factor 1 (Smurf1), which prohibits ubiquitination of the signal transducer and activator of transcription 3 (Stat3) mediated by Smurf1, and ablation of Talin-1 enhances Smurf1-mediated ubiquitination of Stat3, leading to decreased β-cell proliferation and mass. Furthermore, haploinsufficiency of Talin-1 and Stat3 genes, but not that of either gene, in β-cell in mice significantly impairs glucose tolerance and insulin expression, indicating that both factors indeed function in the same genetic pathway. Finally, inducible deletion Talin-1 in β-cell causes glucose intolerance in adult mice. Collectively, our findings reveal that Talin-1 functions as a crucial regulator of β-cell mass, and highlight its potential as a therapeutic target for DM patients.