Cargando…

Head trauma analysis of laboratory reconstructed headers using 1966 Slazenger Challenge and 2018 Telstar 18 soccer balls

Retired soccer players are presenting with early onset neurodegenerative diseases, potentially from heading the ball. It has been proposed that the older composition of soccer balls places higher strains on brain tissues. The purpose of this research was to compare the dynamic head response and brai...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferdousi, Jasmine, Post, Andrew, Karton, Clara, Doelle, Klara, Gilchrist, Michael D., Hoshizaki, T. Blaine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616227/
https://www.ncbi.nlm.nih.gov/pubmed/37903796
http://dx.doi.org/10.1038/s41598-023-45489-2
Descripción
Sumario:Retired soccer players are presenting with early onset neurodegenerative diseases, potentially from heading the ball. It has been proposed that the older composition of soccer balls places higher strains on brain tissues. The purpose of this research was to compare the dynamic head response and brain tissue strain of laboratory reconstructed headers using replicas of the 1966 Slazenger Challenge and 2018 Telstar 18 World Cup soccer balls. Head-to-ball impacts were physically conducted in the laboratory by impacting a Hybrid III head form at three locations and four velocities using dry and wet soccer ball conditions, and computational simulation was used to measure the resulting brain tissue strain. This research showed that few significant differences were found in head dynamic response and maximum principal strain between the dry 1966 and 2018 balls during reconstructed soccer headers. Headers using the wet 1966 soccer ball resulted in higher head form responses at low-velocity headers and lower head responses as velocities increased. This study demonstrates that under dry conditions, soccer ball construction does not have a significant effect on head and brain response during headers reconstructed in the laboratory. Although ball construction didn’t show a notable effect, this study revealed that heading the ball, comparable to goalkeeper kicks and punts at 22 m/s, led to maximum principal strains exceeding the 50% likelihood of injury risk threshold. This has implications for the potential risks associated with repetitive heading in soccer for current athletes.