Cargando…
Personalized relapse prediction in patients with major depressive disorder using digital biomarkers
Major depressive disorder (MDD) is a chronic illness wherein relapses contribute to significant patient morbidity and mortality. Near-term prediction of relapses in MDD patients has the potential to improve outcomes by helping implement a ‘predict and preempt’ paradigm in clinical care. In this stud...
Autores principales: | Vairavan, Srinivasan, Rashidisabet, Homa, Li, Qingqin S., Ness, Seth, Morrison, Randall L., Soares, Claudio N., Uher, Rudolf, Frey, Benicio N., Lam, Raymond W., Kennedy, Sidney H., Trivedi, Madhukar, Drevets, Wayne C., Narayan, Vaibhav A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616277/ https://www.ncbi.nlm.nih.gov/pubmed/37903878 http://dx.doi.org/10.1038/s41598-023-44592-8 |
Ejemplares similares
-
Circulating microRNA associated with future relapse status in major depressive disorder
por: Li, Qingqin S., et al.
Publicado: (2022) -
Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study
por: Nie, Zhi, et al.
Publicado: (2018) -
Meta-analysis of epigenome-wide association studies of major depressive disorder
por: Li, Qingqin S., et al.
Publicado: (2022) -
Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1
por: Nunez, John-Jose, et al.
Publicado: (2021) -
“One Degree of Separation”: A Mixed-Methods Evaluation of Canadian
Mental Health Care User and Provider Experiences With Remote Care During
COVID-19
por: Ceniti, Amanda K., et al.
Publicado: (2022)