Cargando…
Module of Axis-based Nexus Attention for weakly supervised object localization
Weakly supervised object localization tasks remain challenging to identify and segment an entire object rather than only discriminative parts of the object. To tackle this problem, corruption-based approaches have been devised, which involve the training of non-discriminative regions by corrupting (...
Autores principales: | Sohn, Junghyo, Jeon, Eunjin, Jung, Wonsik, Kang, Eunsong, Suk, Heung-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616293/ https://www.ncbi.nlm.nih.gov/pubmed/37903879 http://dx.doi.org/10.1038/s41598-023-45796-8 |
Ejemplares similares
-
Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain–computer interface
por: Ko, Wonjun, et al.
Publicado: (2022) -
Deep joint learning of pathological region localization and Alzheimer’s disease diagnosis
por: Park, Changhyun, et al.
Publicado: (2023) -
Proposals Generation for Weakly Supervised Object Detection in Artwork Images
por: Milani, Federico, et al.
Publicado: (2022) -
Instance-Level Contrastive Learning for Weakly Supervised Object Detection
por: Zhang, Ming, et al.
Publicado: (2022) -
Chest L-Transformer: Local Features With Position Attention for Weakly Supervised Chest Radiograph Segmentation and Classification
por: Gu, Hong, et al.
Publicado: (2022)