Cargando…
Popular large language model chatbots’ accuracy, comprehensiveness, and self-awareness in answering ocular symptom queries
In light of growing interest in using emerging large language models (LLMs) for self-diagnosis, we systematically assessed the performance of ChatGPT-3.5, ChatGPT-4.0, and Google Bard in delivering proficient responses to 37 common inquiries regarding ocular symptoms. Responses were masked, randomly...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616302/ https://www.ncbi.nlm.nih.gov/pubmed/37915603 http://dx.doi.org/10.1016/j.isci.2023.108163 |
Sumario: | In light of growing interest in using emerging large language models (LLMs) for self-diagnosis, we systematically assessed the performance of ChatGPT-3.5, ChatGPT-4.0, and Google Bard in delivering proficient responses to 37 common inquiries regarding ocular symptoms. Responses were masked, randomly shuffled, and then graded by three consultant-level ophthalmologists for accuracy (poor, borderline, good) and comprehensiveness. Additionally, we evaluated the self-awareness capabilities (ability to self-check and self-correct) of the LLM-Chatbots. 89.2% of ChatGPT-4.0 responses were ‘good’-rated, outperforming ChatGPT-3.5 (59.5%) and Google Bard (40.5%) significantly (all p < 0.001). All three LLM-Chatbots showed optimal mean comprehensiveness scores as well (ranging from 4.6 to 4.7 out of 5). However, they exhibited subpar to moderate self-awareness capabilities. Our study underscores the potential of ChatGPT-4.0 in delivering accurate and comprehensive responses to ocular symptom inquiries. Future rigorous validation of their performance is crucial to ensure their reliability and appropriateness for actual clinical use. |
---|