Cargando…

MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells

Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamashita, Nami, Withers, Henry, Morimoto, Yoshihiro, Bhattacharya, Atrayee, Haratake, Naoki, Daimon, Tatsuaki, Fushimi, Atsushi, Nakashoji, Ayako, Thorner, Aaron R., Isenhart, Emily, Rosario, Spencer, Long, Mark D., Kufe, Donald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616323/
https://www.ncbi.nlm.nih.gov/pubmed/37915591
http://dx.doi.org/10.1016/j.isci.2023.108168
_version_ 1785129369958612992
author Yamashita, Nami
Withers, Henry
Morimoto, Yoshihiro
Bhattacharya, Atrayee
Haratake, Naoki
Daimon, Tatsuaki
Fushimi, Atsushi
Nakashoji, Ayako
Thorner, Aaron R.
Isenhart, Emily
Rosario, Spencer
Long, Mark D.
Kufe, Donald
author_facet Yamashita, Nami
Withers, Henry
Morimoto, Yoshihiro
Bhattacharya, Atrayee
Haratake, Naoki
Daimon, Tatsuaki
Fushimi, Atsushi
Nakashoji, Ayako
Thorner, Aaron R.
Isenhart, Emily
Rosario, Spencer
Long, Mark D.
Kufe, Donald
author_sort Yamashita, Nami
collection PubMed
description Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I–V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation.
format Online
Article
Text
id pubmed-10616323
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106163232023-11-01 MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells Yamashita, Nami Withers, Henry Morimoto, Yoshihiro Bhattacharya, Atrayee Haratake, Naoki Daimon, Tatsuaki Fushimi, Atsushi Nakashoji, Ayako Thorner, Aaron R. Isenhart, Emily Rosario, Spencer Long, Mark D. Kufe, Donald iScience Article Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I–V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation. Elsevier 2023-10-11 /pmc/articles/PMC10616323/ /pubmed/37915591 http://dx.doi.org/10.1016/j.isci.2023.108168 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yamashita, Nami
Withers, Henry
Morimoto, Yoshihiro
Bhattacharya, Atrayee
Haratake, Naoki
Daimon, Tatsuaki
Fushimi, Atsushi
Nakashoji, Ayako
Thorner, Aaron R.
Isenhart, Emily
Rosario, Spencer
Long, Mark D.
Kufe, Donald
MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title_full MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title_fullStr MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title_full_unstemmed MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title_short MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
title_sort muc1-c integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616323/
https://www.ncbi.nlm.nih.gov/pubmed/37915591
http://dx.doi.org/10.1016/j.isci.2023.108168
work_keys_str_mv AT yamashitanami muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT withershenry muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT morimotoyoshihiro muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT bhattacharyaatrayee muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT haratakenaoki muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT daimontatsuaki muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT fushimiatsushi muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT nakashojiayako muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT thorneraaronr muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT isenhartemily muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT rosariospencer muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT longmarkd muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells
AT kufedonald muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells