Cargando…
MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells
Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolyt...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616323/ https://www.ncbi.nlm.nih.gov/pubmed/37915591 http://dx.doi.org/10.1016/j.isci.2023.108168 |
_version_ | 1785129369958612992 |
---|---|
author | Yamashita, Nami Withers, Henry Morimoto, Yoshihiro Bhattacharya, Atrayee Haratake, Naoki Daimon, Tatsuaki Fushimi, Atsushi Nakashoji, Ayako Thorner, Aaron R. Isenhart, Emily Rosario, Spencer Long, Mark D. Kufe, Donald |
author_facet | Yamashita, Nami Withers, Henry Morimoto, Yoshihiro Bhattacharya, Atrayee Haratake, Naoki Daimon, Tatsuaki Fushimi, Atsushi Nakashoji, Ayako Thorner, Aaron R. Isenhart, Emily Rosario, Spencer Long, Mark D. Kufe, Donald |
author_sort | Yamashita, Nami |
collection | PubMed |
description | Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I–V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation. |
format | Online Article Text |
id | pubmed-10616323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106163232023-11-01 MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells Yamashita, Nami Withers, Henry Morimoto, Yoshihiro Bhattacharya, Atrayee Haratake, Naoki Daimon, Tatsuaki Fushimi, Atsushi Nakashoji, Ayako Thorner, Aaron R. Isenhart, Emily Rosario, Spencer Long, Mark D. Kufe, Donald iScience Article Activation of the MUC1-C protein promotes lineage plasticity, epigenetic reprogramming, and the cancer stem cell (CSC) state. The present studies performed on enriched populations of triple-negative breast cancer (TNBC) CSCs demonstrate that MUC1-C is essential for integrating activation of glycolytic pathway genes with self-renewal and tumorigenicity. MUC1-C further integrates the glycolytic pathway with suppression of mitochondrial DNA (mtDNA) genes encoding components of mitochondrial Complexes I–V. The repression of mtDNA genes is explained by MUC1-C-mediated (i) downregulation of the mitochondrial transcription factor A (TFAM) required for mtDNA transcription and (ii) induction of the mitochondrial transcription termination factor 3 (mTERF3). In support of pathogenesis that suppresses mitochondrial ROS production, targeting MUC1-C increases (i) mtDNA gene transcription, (ii) superoxide levels, and (iii) loss of self-renewal capacity. These findings and scRNA-seq analysis of CSC subpopulations indicate that MUC1-C regulates self-renewal and redox balance by integrating activation of glycolysis with suppression of oxidative phosphorylation. Elsevier 2023-10-11 /pmc/articles/PMC10616323/ /pubmed/37915591 http://dx.doi.org/10.1016/j.isci.2023.108168 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yamashita, Nami Withers, Henry Morimoto, Yoshihiro Bhattacharya, Atrayee Haratake, Naoki Daimon, Tatsuaki Fushimi, Atsushi Nakashoji, Ayako Thorner, Aaron R. Isenhart, Emily Rosario, Spencer Long, Mark D. Kufe, Donald MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title | MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title_full | MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title_fullStr | MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title_full_unstemmed | MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title_short | MUC1-C integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
title_sort | muc1-c integrates aerobic glycolysis with suppression of oxidative phosphorylation in triple-negative breast cancer stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616323/ https://www.ncbi.nlm.nih.gov/pubmed/37915591 http://dx.doi.org/10.1016/j.isci.2023.108168 |
work_keys_str_mv | AT yamashitanami muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT withershenry muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT morimotoyoshihiro muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT bhattacharyaatrayee muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT haratakenaoki muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT daimontatsuaki muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT fushimiatsushi muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT nakashojiayako muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT thorneraaronr muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT isenhartemily muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT rosariospencer muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT longmarkd muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells AT kufedonald muc1cintegratesaerobicglycolysiswithsuppressionofoxidativephosphorylationintriplenegativebreastcancerstemcells |