Cargando…
A phantom based evaluation of the clinical imaging performance of electronic portal imaging devices
PURPOSE: In this study an evaluation of the imaging performance of an electronic portal imaging device (EPID) is presented. The evaluation performed employing the QC-3V image quality phantom. METHODS: An EPID system of a 6 MV LINAC, was used to obtain images of a QC-3V EPID phantom. The X-ray source...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616349/ https://www.ncbi.nlm.nih.gov/pubmed/37916082 http://dx.doi.org/10.1016/j.heliyon.2023.e21116 |
Sumario: | PURPOSE: In this study an evaluation of the imaging performance of an electronic portal imaging device (EPID) is presented. The evaluation performed employing the QC-3V image quality phantom. METHODS: An EPID system of a 6 MV LINAC, was used to obtain images of a QC-3V EPID phantom. The X-ray source to phantom distance was 100 cm and the field size was 15x15 cm(2). The irradiation conditions comprised Dose Rates (DR) of 200, 400 and 600 for a 2 MU–100 MU range. The Contrast Transfer Function (CTF), the Noise Power Spectrum (NPS), the Normalized Noise Power Spectrum (NNPS) and the Contrast-to-Noise Ratio (CNR) were studied. In addition, an alternative factor showing a frequency related output signal-to-noise ratio (SNR), the Signal-to-Noise-Frequency Response (SNFR), has been introduced. SNFR is a comprehensive quality index, easily determined in clinical environment. RESULTS: The CTF curves were found comparable to each other. The lowest values were measured at 2 MU and 200 MU/min. Concerning the NPS and NNPS graphs it was found that the values decrease up to approximately 0.3 lp/mm and demonstrate a white noise shape afterwards. SNFR values were found reducing with spatial frequency. Highest CNR were found between the region 7 and 11 of the phantom. CONCLUSIONS: The influence of MU and DR on EPID performance were investigated. Image quality was assessed using the QC-3V phantom. The presented results can lead to image quality amelioration and act supportively to current image quality control routine protocols. |
---|