Cargando…

H&E image analysis pipeline for quantifying morphological features

Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Ariotta, Valeria, Lehtonen, Oskari, Salloum, Shams, Micoli, Giulia, Lavikka, Kari, Rantanen, Ville, Hynninen, Johanna, Virtanen, Anni, Hautaniemi, Sampsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616375/
https://www.ncbi.nlm.nih.gov/pubmed/37915837
http://dx.doi.org/10.1016/j.jpi.2023.100339
_version_ 1785129381894553600
author Ariotta, Valeria
Lehtonen, Oskari
Salloum, Shams
Micoli, Giulia
Lavikka, Kari
Rantanen, Ville
Hynninen, Johanna
Virtanen, Anni
Hautaniemi, Sampsa
author_facet Ariotta, Valeria
Lehtonen, Oskari
Salloum, Shams
Micoli, Giulia
Lavikka, Kari
Rantanen, Ville
Hynninen, Johanna
Virtanen, Anni
Hautaniemi, Sampsa
author_sort Ariotta, Valeria
collection PubMed
description Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.
format Online
Article
Text
id pubmed-10616375
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106163752023-11-01 H&E image analysis pipeline for quantifying morphological features Ariotta, Valeria Lehtonen, Oskari Salloum, Shams Micoli, Giulia Lavikka, Kari Rantanen, Ville Hynninen, Johanna Virtanen, Anni Hautaniemi, Sampsa J Pathol Inform Original Research Article Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus. Elsevier 2023-10-05 /pmc/articles/PMC10616375/ /pubmed/37915837 http://dx.doi.org/10.1016/j.jpi.2023.100339 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Research Article
Ariotta, Valeria
Lehtonen, Oskari
Salloum, Shams
Micoli, Giulia
Lavikka, Kari
Rantanen, Ville
Hynninen, Johanna
Virtanen, Anni
Hautaniemi, Sampsa
H&E image analysis pipeline for quantifying morphological features
title H&E image analysis pipeline for quantifying morphological features
title_full H&E image analysis pipeline for quantifying morphological features
title_fullStr H&E image analysis pipeline for quantifying morphological features
title_full_unstemmed H&E image analysis pipeline for quantifying morphological features
title_short H&E image analysis pipeline for quantifying morphological features
title_sort h&e image analysis pipeline for quantifying morphological features
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616375/
https://www.ncbi.nlm.nih.gov/pubmed/37915837
http://dx.doi.org/10.1016/j.jpi.2023.100339
work_keys_str_mv AT ariottavaleria heimageanalysispipelineforquantifyingmorphologicalfeatures
AT lehtonenoskari heimageanalysispipelineforquantifyingmorphologicalfeatures
AT salloumshams heimageanalysispipelineforquantifyingmorphologicalfeatures
AT micoligiulia heimageanalysispipelineforquantifyingmorphologicalfeatures
AT lavikkakari heimageanalysispipelineforquantifyingmorphologicalfeatures
AT rantanenville heimageanalysispipelineforquantifyingmorphologicalfeatures
AT hynninenjohanna heimageanalysispipelineforquantifyingmorphologicalfeatures
AT virtanenanni heimageanalysispipelineforquantifyingmorphologicalfeatures
AT hautaniemisampsa heimageanalysispipelineforquantifyingmorphologicalfeatures