Cargando…
Mapping Kenyon cell inputs in Drosophila using dye electroporation
Here, we describe a technique for charting the inputs of individual Kenyon cells in the Drosophila brain. In this technique, a single Kenyon cell per brain hemisphere is photo-labeled to visualize its claw-like dendritic terminals; a dye-filled electrode is used to backfill the projection neuron con...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616406/ https://www.ncbi.nlm.nih.gov/pubmed/37864788 http://dx.doi.org/10.1016/j.xpro.2023.102478 |
Sumario: | Here, we describe a technique for charting the inputs of individual Kenyon cells in the Drosophila brain. In this technique, a single Kenyon cell per brain hemisphere is photo-labeled to visualize its claw-like dendritic terminals; a dye-filled electrode is used to backfill the projection neuron connected to each claw. This process can be repeated in hundreds of brains to build a connectivity matrix. Statistical analyses of such a matrix can reveal connectivity patterns such as random input and biased connectivity. For complete details on the use and execution of this protocol, please refer to Hayashi et al. (2022).(1) |
---|