Cargando…
Hybrid deep learning model with enhanced sunflower optimization for flood and earthquake detection
Natural catastrophes may strike anywhere at any moment and cause widespread destruction. Most people do not have the necessary catastrophe preparedness knowledge or awareness. The combination of a flood and an earthquake can cause widespread destruction. Natural catastrophes have a domino effect on...
Autores principales: | E S, Phalguna Krishna, Thatha, Venkata Nagaraju, Mamidisetti, Gowtham, Mantena, Srihari Varma, Chintamaneni, Phanikanth, Vatambeti, Ramesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616408/ https://www.ncbi.nlm.nih.gov/pubmed/37916091 http://dx.doi.org/10.1016/j.heliyon.2023.e21172 |
Ejemplares similares
-
Prediction of DDoS attacks in agriculture 4.0 with the help of prairie dog optimization algorithm with IDSNet
por: Vatambeti, Ramesh, et al.
Publicado: (2023) -
Genomic Prediction of Sunflower Hybrids Oil Content
por: Mangin, Brigitte, et al.
Publicado: (2017) -
Sunflower Hybrid Breeding: From Markers to Genomic Selection
por: Dimitrijevic, Aleksandra, et al.
Publicado: (2018) -
Measuring Bee Effects on Seed Traits of Hybrid Sunflower
por: Brewer, Gary J., et al.
Publicado: (2023) -
Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods
por: Oshiro, Kazue, et al.
Publicado: (2022)