Cargando…
Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis
BACKGROUND: Lyme disease is among the most reported tick-borne diseases worldwide, making it a major ongoing public health concern. An effective Lyme disease case reporting system depends on timely diagnosis and reporting by health care professionals, and accurate laboratory testing and interpretati...
Autores principales: | Laison, Elda Kokoe Elolo, Hamza Ibrahim, Mohamed, Boligarla, Srikanth, Li, Jiaxin, Mahadevan, Raja, Ng, Austen, Muthuramalingam, Venkataraman, Lee, Wee Yi, Yin, Yijun, Nasri, Bouchra R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616745/ https://www.ncbi.nlm.nih.gov/pubmed/37843893 http://dx.doi.org/10.2196/47014 |
Ejemplares similares
-
Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter
por: Boligarla, Srikanth, et al.
Publicado: (2023) -
Sentiment of Emojis
por: Kralj Novak, Petra, et al.
Publicado: (2015) -
The pragmatic functions of emojis in Arabic tweets
por: Alharbi, Amjad, et al.
Publicado: (2023) -
The Painful Tweet: Text, Sentiment, and Community Structure Analyses of Tweets Pertaining to Pain
por: Tighe, Patrick J, et al.
Publicado: (2015) -
Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets
por: Vickey, Theodore, et al.
Publicado: (2017)