Cargando…
Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity
While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability duri...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616818/ https://www.ncbi.nlm.nih.gov/pubmed/37656617 http://dx.doi.org/10.1016/j.celrep.2023.113057 |
_version_ | 1785129476971036672 |
---|---|
author | Carzoli, Kathryn Lynn Kogias, Georgios Fawcett-Patel, Jessica Liu, Siqiong June |
author_facet | Carzoli, Kathryn Lynn Kogias, Georgios Fawcett-Patel, Jessica Liu, Siqiong June |
author_sort | Carzoli, Kathryn Lynn |
collection | PubMed |
description | While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling. |
format | Online Article Text |
id | pubmed-10616818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-106168182023-10-31 Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity Carzoli, Kathryn Lynn Kogias, Georgios Fawcett-Patel, Jessica Liu, Siqiong June Cell Rep Article While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling. 2023-09-26 2023-08-31 /pmc/articles/PMC10616818/ /pubmed/37656617 http://dx.doi.org/10.1016/j.celrep.2023.113057 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Carzoli, Kathryn Lynn Kogias, Georgios Fawcett-Patel, Jessica Liu, Siqiong June Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title | Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title_full | Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title_fullStr | Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title_full_unstemmed | Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title_short | Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity |
title_sort | cerebellar interneurons control fear memory consolidation via learning-induced hcn plasticity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616818/ https://www.ncbi.nlm.nih.gov/pubmed/37656617 http://dx.doi.org/10.1016/j.celrep.2023.113057 |
work_keys_str_mv | AT carzolikathrynlynn cerebellarinterneuronscontrolfearmemoryconsolidationvialearninginducedhcnplasticity AT kogiasgeorgios cerebellarinterneuronscontrolfearmemoryconsolidationvialearninginducedhcnplasticity AT fawcettpateljessica cerebellarinterneuronscontrolfearmemoryconsolidationvialearninginducedhcnplasticity AT liusiqiongjune cerebellarinterneuronscontrolfearmemoryconsolidationvialearninginducedhcnplasticity |