Cargando…
DNA-Based Near-Infrared Voltage Sensors
[Image: see text] Indocyanine green (ICG) is an FDA approved dye widely used for fluorescence imaging in research, surgical navigation, and medical diagnostics. However, ICG has a few drawbacks, such as concentration-dependent aggregation and absorbance, nonspecific cellular targeting, and rapid pho...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616843/ https://www.ncbi.nlm.nih.gov/pubmed/37725687 http://dx.doi.org/10.1021/acssensors.3c01429 |
Sumario: | [Image: see text] Indocyanine green (ICG) is an FDA approved dye widely used for fluorescence imaging in research, surgical navigation, and medical diagnostics. However, ICG has a few drawbacks, such as concentration-dependent aggregation and absorbance, nonspecific cellular targeting, and rapid photobleaching. Here, we report a novel DNA-based nanosensor platform that utilizes monomers of ICG and cholesterol. Using DNA origami, we can attach ICG to a DNA structure, maintaining its concentration, preserving its near-infrared (NIR) absorbance, and allowing attachment of targeting moieties. We characterized the nanosensors’ absorbance, stability in blood, and voltage sensing in vitro. This study presents a novel DNA-based ICG nanosensor platform for cellular voltage sensing for future in vivo applications. |
---|