Cargando…

Raman spectroscopy-based prediction of ofloxacin concentration in solution using a novel loss function and an improved GA-CNN model

BACKGROUND: A Raman spectroscopy method can quickly and accurately measure the concentration of ofloxacin in solution. This method has the advantages of accuracy and rapidity over traditional detection methods. However, the manual analysis methods for the collected Raman spectral data often ignore t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Chenyu, Shi, Yuanbo, Huang, Yueyang, Dai, Gongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617066/
https://www.ncbi.nlm.nih.gov/pubmed/37904084
http://dx.doi.org/10.1186/s12859-023-05542-3
Descripción
Sumario:BACKGROUND: A Raman spectroscopy method can quickly and accurately measure the concentration of ofloxacin in solution. This method has the advantages of accuracy and rapidity over traditional detection methods. However, the manual analysis methods for the collected Raman spectral data often ignore the nonlinear characteristics of the data and cannot accurately predict the concentration of the target sample. METHODS: To address this drawback, this paper proposes a novel kernel-Huber loss function that combines the Huber loss function with the Gaussian kernel function. This function is used with an improved genetic algorithm-convolutional neural network (GA-CNN) to model and predict the Raman spectral data of different concentrations of ofloxacin in solution. In addition, the paper introduces recurrent neural networks (RNN), long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) and gated recurrent units (GRU) models to conduct multiple experiments and use root mean square error (RMSE) and residual predictive deviation (RPD) as evaluation metrics. RESULTS: The proposed method achieved an [Formula: see text] of 0.9989 on the test set data and improved by 3% over the traditional CNN. Multiple experiments were also conducted using RNN, LSTM, BiLSTM, and GRU models and evaluated their performance using RMSE, RPD, and other metrics. The results showed that the proposed method consistently outperformed these models. CONCLUSIONS: This paper demonstrates the effectiveness of the proposed method for predicting the concentration of ofloxacin in solution based on Raman spectral data, in addition to discussing the advantages and limitations of the proposed method, and the study proposes a solution to the problem of deep learning methods for Raman spectral concentration prediction.