Cargando…
KAMPNet: multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning
BACKGROUNDS: Predicting medications is a crucial task in intelligent healthcare systems, aiding doctors in making informed decisions based on electronic medical records (EMR). However, medication prediction faces challenges due to complex relations within heterogeneous medical data. Existing studies...
Autores principales: | An, Yang, Tang, Haocheng, Jin, Bo, Xu, Yi, Wei, Xiaopeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617141/ https://www.ncbi.nlm.nih.gov/pubmed/37904198 http://dx.doi.org/10.1186/s12911-023-02325-x |
Ejemplares similares
-
Incremental Multi-source Entity Resolution for Knowledge Graph Completion
por: Saeedi, Alieh, et al.
Publicado: (2020) -
Knowledge grounded medical dialogue generation using augmented graphs
por: Varshney, Deeksha, et al.
Publicado: (2023) -
Systematic Fusion of Multi-Source Cognitive Networks With Graph Learning - A Study on Fronto-Parietal Network
por: Zhang, Xiaofei, et al.
Publicado: (2022) -
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
por: Tian, Hao, et al.
Publicado: (2022) -
Compressing deep graph convolution network with multi-staged knowledge distillation
por: Kim, Junghun, et al.
Publicado: (2021)