Cargando…

Identification of novel flavin-dependent monooxygenase from Strobilanthes Cusia reveals molecular basis of indoles’ biosynthetic logic

BACKGROUND: Strobilanthes cusia (Nees) Kuntze is a traditional medical plant distributed widely in south China. The indole compounds that originated from the plant are responsible for its pharmacological activities. However, the reason why indole ingredients are accumulated in this herb and how it i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chang, Cheng, Mengya, Ma, Chao, Chen, Junfeng, Tan, Hexin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617207/
https://www.ncbi.nlm.nih.gov/pubmed/37904107
http://dx.doi.org/10.1186/s12870-023-04557-5
Descripción
Sumario:BACKGROUND: Strobilanthes cusia (Nees) Kuntze is a traditional medical plant distributed widely in south China. The indole compounds that originated from the plant are responsible for its pharmacological activities. However, the reason why indole ingredients are accumulated in this herb and how it is biosynthesized has remained largely unknown. RESULTS: In this study, metabolic and transcriptional profiling measurement experiments of different S. cusia organs were carried out to understand the underlying molecular basis of indoles’ biosynthetic logic. A metabolic investigation demonstrated that the indoles are primarily accumulated mainly in aerial parts, particularly in leaves. RNA-seq was employed to reveal the organ specific accumulation of indoles in different S. cusia organs. Meanwhile, a flavin-dependent monooxygenase gene (ScFMO1) was found in S. cusia, and it has capacity to produce indoxyl from indole by the fermentation assay. Finally, we assessed the outcomes of transient expression experiment in tobacco and confirmed that ScFMO1 localizes in cytoplasm. CONCLUSIONS: Our results suggest that ScFMO1 plays a key role in biosynthesis of indoles (Indigo, indirubin, indican, etc.), it will be useful for illuminating the molecular basis of the medicinal indoles’ biosynthesis and developing strategies for improving their yields. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04557-5.