Cargando…

TPpred-LE: therapeutic peptide function prediction based on label embedding

BACKGROUND: Therapeutic peptides play an essential role in human physiology, treatment paradigms and bio-pharmacy. Several computational methods have been developed to identify the functions of therapeutic peptides based on binary classification and multi-label classification. However, these methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Hongwu, Yan, Ke, Liu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617231/
https://www.ncbi.nlm.nih.gov/pubmed/37904157
http://dx.doi.org/10.1186/s12915-023-01740-w
Descripción
Sumario:BACKGROUND: Therapeutic peptides play an essential role in human physiology, treatment paradigms and bio-pharmacy. Several computational methods have been developed to identify the functions of therapeutic peptides based on binary classification and multi-label classification. However, these methods fail to explicitly exploit the relationship information among different functions, preventing the further improvement of the prediction performance. Besides, with the development of peptide detection technology, peptide functions will be more comprehensively discovered. Therefore, it is necessary to explore computational methods for detecting therapeutic peptide functions with limited labeled data. RESULTS: In this study, a novel method called TPpred-LE based on Transformer framework was proposed for predicting therapeutic peptide multiple functions, which can explicitly extract the function correlation information by using label embedding methodology and exploit the specificity information based on function-specific classifiers. Besides, we incorporated the multi-label classifier retraining approach (MCRT) into TPpred-LE to detect the new therapeutic functions with limited labeled data. Experimental results demonstrate that TPpred-LE outperforms the other state-of-the-art methods, and TPpred-LE with MCRT is robust for the limited labeled data. CONCLUSIONS: In summary, TPpred-LE is a function-specific classifier for accurate therapeutic peptide function prediction, demonstrating the importance of the relationship information for therapeutic peptide function prediction. MCRT is a simple but effective strategy to detect functions with limited labeled data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-023-01740-w.