Cargando…
TPpred-LE: therapeutic peptide function prediction based on label embedding
BACKGROUND: Therapeutic peptides play an essential role in human physiology, treatment paradigms and bio-pharmacy. Several computational methods have been developed to identify the functions of therapeutic peptides based on binary classification and multi-label classification. However, these methods...
Autores principales: | Lv, Hongwu, Yan, Ke, Liu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617231/ https://www.ncbi.nlm.nih.gov/pubmed/37904157 http://dx.doi.org/10.1186/s12915-023-01740-w |
Ejemplares similares
-
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022) -
NEDD: a network embedding based method for predicting drug-disease associations
por: Zhou, Renyi, et al.
Publicado: (2020) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue
por: Robertson, David, et al.
Publicado: (2008) -
LePrimAlign: local entropy-based alignment of PPI networks to predict conserved modules
por: Maskey, Sawal, et al.
Publicado: (2019)