Cargando…

Ambient Room Temperatures in a Burn Intensive Care Unit—A Quality Improvement Project

Introduction: Patients with major burn injuries are particularly susceptible to hypothermia. The ability to maintain and rapidly increase ambient temperatures may reduce the impact of hypothermia and the hypermetabolic response. The purpose of this study was to determine ambient patient room tempera...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogers, Alan, Ho, George, Mosa, Adam, Cartotto, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617462/
https://www.ncbi.nlm.nih.gov/pubmed/37915353
http://dx.doi.org/10.1177/22925503221078689
Descripción
Sumario:Introduction: Patients with major burn injuries are particularly susceptible to hypothermia. The ability to maintain and rapidly increase ambient temperatures may reduce the impact of hypothermia and the hypermetabolic response. The purpose of this study was to determine ambient patient room temperatures in a burn intensive care unit (ICU) and to evaluate our ability to adjust these temperatures. Methods: The ambient temperatures of 9 burn ICU patient rooms were recorded hourly over a 6-month period in an American Burn Association-verified burn centre. Temperatures were recorded using wall-mounted smart sensors, transmitted to a mobile smartphone application via Bluetooth, and then exported to Excel for analysis. On 2 predetermined dates, thermostats in all rooms were simultaneously set to maximum, and monitored over 3 h. This represented a sound change initiative, and replicated a medical order to increase the ambient temperature during critical stages of patient care. Results: We recorded 4394 individual hourly temperature measurements for each of the 9 rooms. The mean ambient temperature was 23.5 ± 0.3 °C (range 22.8-24). After intervention 1, ambient temperatures increased <2 °C in 7 rooms and by only 2 °C-3 °C in the other 2 rooms. The overall mean increase in temperature over 3 h across all rooms was 1.03 °C ± 1.19 °C (range −0.88 to 3.26). Following intervention 2, temperatures could be increased by ≥2 °C in only 2 rooms with an overall mean increase in temperature of only 0.76 °C ± 0.99 °C (range −0.29 to 2.43) across all rooms. Conclusions: The burn ICU rooms were relatively cool and our ability locally to adjust ambient temperatures quickly was limited. Burn centres should have regular facility assessments to assess whether ambient temperatures can be adjusted expeditiously when required.