Cargando…

3D Generative Model Latent Disentanglement via Local Eigenprojection

Designing realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Foti, Simone, Koo, Bongjin, Stoyanov, Danail, Clarkson, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617979/
https://www.ncbi.nlm.nih.gov/pubmed/37915466
http://dx.doi.org/10.1111/cgf.14793
_version_ 1785129683218595840
author Foti, Simone
Koo, Bongjin
Stoyanov, Danail
Clarkson, Matthew J.
author_facet Foti, Simone
Koo, Bongjin
Stoyanov, Danail
Clarkson, Matthew J.
author_sort Foti, Simone
collection PubMed
description Designing realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural‐network‐based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state‐of‐the‐art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre‐trained models are available at github.com/simofoti/LocalEigenprojDisentangled.
format Online
Article
Text
id pubmed-10617979
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106179792023-11-01 3D Generative Model Latent Disentanglement via Local Eigenprojection Foti, Simone Koo, Bongjin Stoyanov, Danail Clarkson, Matthew J. Comput Graph Forum Original Articles Designing realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural‐network‐based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state‐of‐the‐art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre‐trained models are available at github.com/simofoti/LocalEigenprojDisentangled. John Wiley and Sons Inc. 2023-04-04 2023-09 /pmc/articles/PMC10617979/ /pubmed/37915466 http://dx.doi.org/10.1111/cgf.14793 Text en © 2023 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Foti, Simone
Koo, Bongjin
Stoyanov, Danail
Clarkson, Matthew J.
3D Generative Model Latent Disentanglement via Local Eigenprojection
title 3D Generative Model Latent Disentanglement via Local Eigenprojection
title_full 3D Generative Model Latent Disentanglement via Local Eigenprojection
title_fullStr 3D Generative Model Latent Disentanglement via Local Eigenprojection
title_full_unstemmed 3D Generative Model Latent Disentanglement via Local Eigenprojection
title_short 3D Generative Model Latent Disentanglement via Local Eigenprojection
title_sort 3d generative model latent disentanglement via local eigenprojection
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617979/
https://www.ncbi.nlm.nih.gov/pubmed/37915466
http://dx.doi.org/10.1111/cgf.14793
work_keys_str_mv AT fotisimone 3dgenerativemodellatentdisentanglementvialocaleigenprojection
AT koobongjin 3dgenerativemodellatentdisentanglementvialocaleigenprojection
AT stoyanovdanail 3dgenerativemodellatentdisentanglementvialocaleigenprojection
AT clarksonmatthewj 3dgenerativemodellatentdisentanglementvialocaleigenprojection