Cargando…
3D Generative Model Latent Disentanglement via Local Eigenprojection
Designing realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss fun...
Autores principales: | Foti, Simone, Koo, Bongjin, Stoyanov, Danail, Clarkson, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617979/ https://www.ncbi.nlm.nih.gov/pubmed/37915466 http://dx.doi.org/10.1111/cgf.14793 |
Ejemplares similares
-
Automatic, global registration in laparoscopic liver surgery
por: Koo, Bongjin, et al.
Publicado: (2021) -
Evaluation of a calibration rig for stereo laparoscopes
por: Dowrick, Thomas, et al.
Publicado: (2023) -
Utility of optical see-through head mounted displays in augmented reality-assisted surgery: A systematic review
por: Birlo, Manuel, et al.
Publicado: (2022) -
Disentangling the latent space of GANs for semantic face editing
por: Niu, Yongjie, et al.
Publicado: (2023) -
Spatial calibration of a 2D/3D ultrasound using a tracked needle
por: Vasconcelos, Francisco, et al.
Publicado: (2016)