Cargando…
Survival analysis of patient groups defined by unsupervised machine learning clustering methods based on patient metabolomic data.
PURPOSE: Meta-analyses failed to accurately identify patients with non-metastatic breast cancer who are likely to benefit from chemotherapy, and metabolomics could provide new answers. In our previous published work, patients were clustered using five different unsupervised machine learning (ML) met...
Autores principales: | Bailleux, Caroline, Chardin, David, Guigonis, Jean-Marie, Ferrero, Jean-Marc, Chateau, Yann, Humbert, Olivier, Pourcher, Thierry, Gal, Jocelyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618114/ https://www.ncbi.nlm.nih.gov/pubmed/37920813 http://dx.doi.org/10.1016/j.csbj.2023.10.033 |
Ejemplares similares
-
Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer
por: Gal, Jocelyn, et al.
Publicado: (2020) -
Metabolomic Signatures of Scarff–Bloom–Richardson (SBR) Grade in Non-Metastatic Breast Cancer
por: Bailleux, Caroline, et al.
Publicado: (2023) -
Primal-dual for classification with rejection (PD-CR): a novel method for classification and feature selection—an application in metabolomics studies
por: Chardin, David, et al.
Publicado: (2021) -
Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies
por: Chardin, David, et al.
Publicado: (2022) -
LC-MS based metabolomic profiling for renal cell carcinoma histologic subtypes
por: Jing, Lun, et al.
Publicado: (2019)